
A STUDlY OF SOFTWARE MAINTENANCE COSTS
OF AIR FORCE LARGE SCALE

¶ COMPUTER SYSTEMS

Robert E. NeSmith II
Captain, USAF

15 DTIC

DEPARTMENT OF THE AIR FORCE F
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright- Patterson Air Force Base, Ohio
Thill dlc~ hc= be.. ewo a

66 G11 2.5 26 2

AFIT/GSM/LSM/86

A STUDY OF SOFTWARE MAINTENANCE COSTS
OF AIR FORCE LARGE SCALE

COMPUTER SYSTEMS

THESIS

Robert E. NeSmith LI
Captain, USAF

AFIT/GSM/LSM/86S- 15 TDT IC
.NOV 2, 6 986

Approved for public release; distribution unlimited

1%

The contents of the document are technically accurate, and no
sensitive items, detrimental ideas, or deleterious information is
contained therein. Furthermore, the views expressed in the
document are those of the author and do not necessarily reflect
the views of the School of Systems and Logistics, the Air
University, the United States Air Force, or the Department of
Defense.

Accession For
NTIS GRA&I-)k
DTIC TAB
Unannounced 0
Justification
By,

Dis___tribution/

Availability Codes

;Avail and/or " -
Dist S pecilal

AFIT/GSM/LSM4/86S- 15

A STUDY OF SOFTWARE MAINTENANCE COSTS OF AIR FORCE

LARGE SCALE COMPUTER SYSTEMS

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Systems Management

Robert E. NeSmith II, B.S.

Captain, USAF

September 1986

Approved for public release; distribution unlimited

Preface

The purpose of this study was to examine software

maintenance costs and its effect on Air Force life cycle

costs. Only recently has work been devoted to the study

of methods for maintaining software once it has been

developed. Maintenance costs are rising within industry

and the Air Force at an alarming rate. If efforts are not

taken to reduce the current rise in maintenance, time and

resources will not be available to develop new software.

I would like to thank Professor James D. Meadows,

my advisor, for his support, advice, and time. Captain

Roger Davis has my appreciation for providing many hours

of help by reading my thesis and giving constructive com-

ments. I would also like to thank Mr. Fred Wixon of

HQ SISC/SCD at Gunter AFS AL for his help with the AFR

700-19 database. I greatly appreciate the help and sup-

port of my family during this thesis effort. Lastly, I

wish to give special thanks to my wife, Barbara, for her

innumerable hours of support on my behalf. She richly

deserves more appreciation than is possible in words.

- Robert E. NeSmith II

&

Table of Contents

Page

Preface .. ii

List of Figures vi

List of Tables vii

Abstract viii

I. Overview 1

Introduction 1
Problem Statement 4
Justification 5
Objectives of Research 5
Scope 6

II. Background 8

Section I 8

Software Development 8
Software Maintenance 9

Section II.................. 12

Software Life Cycle Costs 12
Software Cost Estimation 13

Section Ill 18

Maintenance Programmers 18
Management and User Influence 20
Air Force Issues 21

Section IV 22

Do'iumentation 22
Software Quality Assurance. 23
Configuration Management 24
Metrics 26
Off-the-shelf Software 26

iii

~.9* .~ J

Page

III. Research Methodology 28

AFR 700-19 Database 28

Specific Data Fields Used 30
Computer Support 31
Research Objective One 33
Research Objective Two 34
Research Objective Three 35
Research Objective Four 36
Research Objective Five 36

1V. Research Observations 38

Research Objective One ?0..

AF Total Cost 41
Prograxming Languages 43
Command................... 45
Contractor Developed Software 49

Research Objective Two 49

Programming Language 49
Command 50

Research Objective Three 51

AF Total Cost 51
Programning Languages. 5'
Command 54

Contractor Maintenance Costs 58

Research Objective Four 59

Programming Language 60
Command 61

Research Objective Five 62

V. Conclusions and Recommendations 64

Conclusions 64

Research Objective One 65
Research Objective Two 65
Research Objective Three *.66
Research Objective Four 66
Research Objective Five 67

iv

Page

limitations of Research 6

Recommendations 69

Appendix A: Definition of Terms 72

Appendix B: SAS Programn 73

Appendix C~: Cost per Line Compariaon Graphs 75

Appendix D: AFR 700-19 Database Description........96

Appendix E: Tables of Cost Totals 98

Appendix F: Graphs of Total Software Costs 119

Appendix G: Software Quality Assurance Factor
Tradeoffs. 140

Appendix H: Definitions of Maintenance Activities . .. 144

Appendix I: Metrics of Maintenance............147

Bibliography ... 148

Vita ... 151

vN

M 1 111111111 11112 110k 1
V

ill III

List of Figures

Figure Page

1-1. Hardware/Software Cost Trends 2

2-1. Error Discovery Rate 24

2-2. Increase in Cost-to-Fix or Change
Software Throughout Life Cycle 25

vi

List of Tables

Table Page

2-1. Top-Down "Detailed" Models: Available
Development Models...............................15

2-2. Top-Down "Detailed" Models: Available

Support Models...................16I

4-1. Cctnmand Frequency Count 39

4-2. Language Frequency Count..............40

4-3. Development Cost per Line ny Category. 42

4-4. Maintenance Cost per Line by Category.......

vii

Al' stract

Software maintenance is a growing concern through-

out the software community. Due to the rising cost of

computer sofcware and the even greater increase in the

software maintenance share of che budget, maintenance is

becoming the major cost in a data processing organization.

This thesis examines the maintenance costs of

Air Force organic' software for the last thirty years.

Generally, the cost per line of code and the total costs

are rising for the large scale automatic data processing

computer systems. Contractor developed software is also

exam.ined and its influence on Air Force software costs.

'II

viii

viii

A STUDY OF SOFTWARE MAINTENANCE COSTS OF AIR FORCE

LARGE SCALE COMPUTER SYSTEMS

1. Overview

Introduction

Industry cost studies of software have shown that

of the various life cycle stages of a software system,

software mainteniance is the most expensive portion (25:1).

Maintenance has been defined as the performance of those

activities required to keep a software system operational

and responsive to its users after it has been accepted and

placed into production. Maintenance hds also been found

to consume over 50 percent of the software life cycle

budget (13:65; 19:4; 14:4). Studies performed in the

1970s and 1980s have shown that the longer an error

remains undetected, the more it will cost to correct that

error (15:116). For example, an error found in the design

stage is cheaper to correct than an error found in a later

stage such as testing. Therefore, emphasis on software

maintainability early in the development process can reduce

costs by finding and correcting any of the various design

or program errors that can occur before a system is opera-

tional (925:2). Industry estimates suggest that once a

system is operational, -rogram changes cost up to

thirty-seven timres more than program changs made during

development (9:51).

Further, we can expect software costs to continue

to increase.

The annual cost of computer software in the United
States in 1980 was approximately 40 billion dollars or
about 2 percent of the Gross National Product (GNP).
Its rate of growth is considerably greater than that
of the economy in general. (5:17)

The combined cost for software development and maintenance

is predicted to be 13 percent of the GNP by 1990. The

ratio of computer software costs to overall computer sys-

tem costs has also grown tremendously. In the 1950s, 90

percent of the cost of a computer system was due to the

cost of computer hardware. Currently, more than 80 percent

of the system cost is attributed to the cost of software

(5:18; 25:1). See Figure 1-1.

100'

II

so-

, \,M
4o

202

1955 197O 1985

Fig. 1-1. Hardware/Software Cost Trends (5:18)

Another factor which will cause software costs to

rise is the increasing reliance on software to accomplish

tasks previously performed by hardware. "As software per-

meates virtually every defense system, cost effective and

reliable software becomes increasingly urgent" (3:52).

The Department of Defense (DoD) estimated in 1982 that

DoD's costs for new software will increase by a factor of

six to $32 billion by 1990 (3:54).

Industry tracks all efforts according to the costs

incurred. Eventually all costs incurred in the operation

and maintenance of software is charged to either the user

or the developer depending upon the situation. If the

software operates properly and produces the desired output,

then the operation expense is charged to the user. If

the software runs improperly, then the software goes back

to the development office for repair and the costs are

incurred by the developer.

However, it is difficult to determine exact soft-

ware costs in the Air Force (AF). Since the Air Force

usually develops software within the same unit or command,

the costs all come out of the same budget. Historically,

only efforts involving initial development have been

tracked. These efforts included the number of lines of

code written, the number of programmer hours expended, the

number of months until delivery, etc. The tracking of

maintenance costs was not considered a part of the software

3

MWLAJL"~kfiýý&W16Lft IUtM iaýM"hs dRi iUý"" & A I AAj~ gW jjV Ird Ca~ O A k AkA &I

costs. In the early 1980s, DoD instituted steps to facili-

tate better tracking of software costs. This was due pri-

,arily to the increased emphasis of "Fraud, Waste and

Abuse" and reduced spending levels.

Finally, new and existing software systems are

developed and maintained by the limited number of program-

mers that exist in industry and government. At the present

rate of growth in maintenance requirements for existing

and new systems, it is expected that all programmers will

do maintenance work without additional time for developing

new software after 1990 (10:74; 28:61).

These factors combined truly present a challenge

to the managers of Air Force software of today and the near

future. The purpose of this thesis is to analyze main-

tenance costs of Air Force software and discuss concepts

which affect these costs.

Problem Statement

Due to the emphasis on budget reductions, ways to

reduce costs become increasingly important. Industry

studies show that software maintenance costs are requiring

a greater share of the overall software budget. The Air

Force has taken an active role in controlling software

development costs but has not adequately assessed the costs

of continual maintenance on its library of software used in

data processing centers. Several studies have been

4

w.~~~~w P W 'W . C

performed on the costs of "embedded" software for weapon

systems. Few comparable studies have been completed on

Air Force data processing or information systems software

(20:7). An understanding of the composition of these costs

is necessary before steps to reduce them can take place.

Justification

A literature search found maintenance studies per-

formed on industry-developed software and on Air Force

embedded software but not on Air Force software for large

automated data processing (ADP) machines. Air Force soft-

ware maintenance presents one area where significant cost

reductions can be achieved to help meet reduced funding

levels imposed by Congress. Methods used successfully by

industry to reduce software maintenance costs may provide

ways for the Air Force to reduce its software maintenance

costs. The information derived from this research will aid

Air Force managers in planning and ass:.gning resources to

the maintenance of Air Force software.

Objectives of Research

This thesis builds on a thesis prepared by

Major Robert E. Childress, an AFIT 1985 graduate. His

thesis is entitled Contractor versus Organic Maintenance

for Space Command Automatic Data Processing Equipment.

Although Major Chiidress looked primarily at manpower

shortages, this thesis looks at costs. The overall

5

objective of this thesis is to analyze historical software

costs by examining the effect of the programming language

used, the number of lines of code, ;:he magnitude of main-

tenance and development costs, year, contractor, and major

command user. This information will allow evaluation of

the following:

1. What has been the change in software develop-

ment costs over time?

2. Have software development costs shown the same

increase independent of the AF command or the programming

language used?

3. What have been the costs of software main-

tenance for large data processing systems?

4. Have software maintenance costs shown the same

increase independent of the AF command or the programming

language used?

5. What differences are found between software

development and maintenance costs?

Scope

Research of projected software requirements indi-

cates that software needs are increasing while at the same

time, budget constraints are being imposed upon DoD by

Congress. Therefore, this thesis effort has potential

for application in all Air Force and possibly all DoD

software efforts. The information provided in this thesis

6

III A

will provide the reader with an awareness of the main-

tenance costs within the Air Force in terms of the com-

puter language used and the user command. It will also

provide current techniques, methodology, and direction that

can reduce maintenance costs for current and future soft-

ware systems. With the limited AF resources available for

developing and maintaining software, efforts on the part of

the user command can reduce these growing costs and make

better use of limited resources.

The major constraint for t!his project is the amount

of time allowed by AFIT for thesis research. The period

allows fifteen months of research work. Another constraint

concerns the accounting methods used by Air Force organiza-

tions in determining software development and maintenance

costs. Also, this study does not examine the subject of

dedicated, system resident, or embedded software costs.

Instead, only those software systems running on automated

or large-scale data processing equipment by the Air Force

and DoD are examined. Studies have been previously per-

formed on the software used in embedded systems. These

studies show even higher maintenance costs than on large

ADP systems mentioned in this thesis. Maintenance on large

ADP systems can be greater than 50 percent of the total

life cycle costs or up to $2000 per line of code, whereas,

embedded software maintenance costs can run as high as

$4000 per line of code (26; 16:16).

...........

II. Background

The U.S. Government is the largest user of com-

puters in the world, with over 17,000 computers running

over 5 million software packages. Most of these packages

were developed at the cost of hundreds of staff years

amounting to billions of dollars (4:115).

This chapter is organized into four basic sections.

The first section gives background on software development

and maintenance. Section two describes software life cycle

costs. Section three presents some areas that increase the

cost of maintenance. Finally, section four presents ways

to reduce the costs of software maintenance.

Section I

Software Development. As software development

costs have risen, so have the associated software mainte-

nance costs. In the 1980s, the U.S. Government is spending

on the average of $900 million annually to support software.

It is predicted that this will rise more than ten-fold by

the 1990s (4:115). Programmers today spend more time

adapting and correcting existing software than writing

new software (4:115). This means that users spend more

on maintenance of softwaru, than on development of new code.

Since software development is time intensive,

economical and efficient techniques to maintain existing

8

software must be used to reduce costs and conserve

resources. Ideally, these techniques should begin when

the program is developed (25:5).

During the past thirty years the number of software

programs has grown at an exponential rate. Many of these

software programs are still in use today. This is espe-

cially true of the government's computer systems. A recent

study states that the average age of government software is

ten years, three months (30:1). This is almost three times

the age of software in industry (22:2). Each of these

programs added to a computer system's library increases

the operations and maintenance portion of the total com-

puter facilities budget (25:5). This leaves less funds

available for the development r_•quirements (28:61).

Software Maintenance. Maintenance covers three

areas: Perfective, Corrective, and Adaptive. Definitions

of these terms are found in Appendix A. Perfective

requires the most time from the maintenance programmer. A

study by the Naticnal Bureau of Standards found the main-

tenance programmer spent 55 percent of his time perfecting

software, 25 percent adapting, leaving only 20 percent for

correction of errors (25:1).

Any maintenance work performed on a system tends

to disrupt the complete program structure. Therefore, it

has been found that the longer the software has been used,

9

the greater the chance of usage problems due to the main-

tenance completed on the software (11:102). Enhancements

will be implemented, hardware will be upgraded, and

untested "bugs" will pop up. All will require programmer

work to run properly. Additionally, much of the older soft-

ware is custom-made, using techniques and languages that

complicate rapid problem analysis and repair (28:61).

In many cases the original writers of software have

left the organization, leaving maintenance to personnel

unfamiliar with the software. Documentation describing

the function of the program is often out of date or non-

existent, decreasing the available reference material.

This in turn increases the work load on software mainte-

nance personnel. Some computer software maintenance is

needed inmmediately due to the critical nature of the soft-

ware. The maintenance programmer does not have the luxury

of months to study the program and make any trial runs

(33:22).

A National Bureau of Standards study examined the

tasks involved in software maintenance. These tasks are

not always performed by just one programmer or office, but

the study shows the reasons why maintenance costs can add

up. The breakdown of these tasks that must be accomplished

and paid for is listed below (19:12).

1. Requirements Analysis

2. Design Analysis

10

3. User Interface

4. Design Review

S. Problem Report Recording and Control

6. Configuration Control

7. Database Modification

8. Code Modification/Reccompilation

9. Code Debugging/Module Testing

10. Subsystem Testing

11. System Testing

12. Documentation Modification

13. Standards Audit

14. Code inspections/Walkthroughs

15. Test Data Generation

16. Management Planning and Control

17. Field Delivery

18. Software Support Development/Maintenance

19. Hardware Support

20. Administrative Support

As can be seen from these tasks, maintenance is basically

a microcosm of the development effort (16:18).

Despite problems with software and its use, soft-

ware development has rapidly expanded and software main-

tenance has begun maturing as a structured science. As

computer hardware has improved in cost, size, and perform-

ance, software capabilities have also improved. New

11

software is more powerful, easier to use, and more readily

available.

Software maintenance activities are affected by

software development and operations. Several software-

related subjects are examined that will provide the reader

with a better understanding of the z Y)le of maintenance in

the total software picture.

Section II

Software Life Cycle Costs. The life cycle of a

cgnputer software system is defined as the period from its

conception until it is no longer used (15:29; 24:9). The

software life cycle includes six basic phases (25:2):

1. Concept and Analysis

2. Requirement Definition

3. Design

4. Code, Debug and Test

5. Installation and Evaluation

6. Operation and Maintenance

Software life cycle costs are all costs incurred in these

six phases. Often software costs are erroneously thought

to occur until the software is delivered to the user. As

in any complex product, many development activities, such

as documentation or structured program coding, affect the

performance of software as well as the maintenance efforts

required during the software life cycle. Any activity

12

involved in the development or maintenance such as docu-

mentation updates or structured coding in developmeiit of

the software will affect the total life cycle costs.

Software Cost Estimation. Prior to the 1970s,

little was done to allow the proper estimation of the cost

of a software project. Software development was basically

considered more of a nebulous form of art than a structured

science. This meant that the developer did not have a firm

idea of the software cost until after the project had

ended. This allowed some projects to far exceed the cost

considered to be the dividing point between cost-effective

and cost-excessive. During the past decade, serious

efforts have been made to add structure and controls to

software. The most notable concept has been Top-Down

Structured Programming (25:3,8).

Cost estimation techniques have followed the struc-

tured development approach. Structured cost estimation

techniques generally fall into three categories: Analogy,

Bottcm-up and Top-Down. Each technique has its own

strengths and limitations.

Analogy estimation compares programs against the

cost of similar programs. The cost estimate is based on

actual experience. Often, though, there is no "similar"

program to compare against (15:12).

13

.w ~ ~ ~ ~ ~ ~ ~ , I'd ¶ ' ~ . 4

Bottom-up techniques estimate costs by estimating

the costs of cckponents or units of the system and then

summing these costs. Bottcau-up techniques give a detailed

basis for costs, are usually accurate and stable, and can

promote individual responsibility for the software. The

problems with the bottcsn-up estimation technique are that

the technique does not capture the integration costs, is

time consuming, and requires a detailed knowledge of the

system (15:12).

The last technique, Top-Down, is also called

parametric. Top-Down estimates software system costs

based on design parameters which can be partitioned among

components or life cycle phases. It is fast and easy to

use while requiring little detailed knowledge. At the

same time, it captures the system-level costs. The weak-

nesses with top-down techniques are that they are less

stable and not always accurate (15:12). Of the Top-Down

models developed, one of the most noted of the 1980s has

been the Constructive Cost Model or "Cocomo" developed by

Dr. Barry Boehm of TRW (5:58). Cocomo is one of the non-

proprietary models available. Several other models, each

varying in the number of software factors they consider,

are also in use today. A list of various models, for

development and for support, is shown in Tables 2-1 and

2-2 115:6,10).

14

I u
IA r

-4 r.4S~

514

00

0

0 U E-4
ý4 H W

1~ 0

OOi 00
L,. f- 0

E 0) r0 >4 (4
W .4N4- 0 1r.f
0(44P-

-4 0 4-0 0 >94 m
o1 H 0 >4 0

$4 3t4 '() E-

E- 4-4 4m 4c)
0 U, m4' 0 (/) w >,

H~ Wi 44 L

4-4-4)

(0 (D

0 Li(0 0

z a,

5.15

E)

00
$4 0 0

U)
0 0 0

04 N 4
> 0

0

0
I ul U)

E-4 >1 0 I 1

o 0 U 0 U-
04 N U) UHHU
C14 C)) 04

z 4: 04 r

>>

0U

m) 4)4 l4

0It 0 60D4
00 U) 12)

0) 0) >-r.i
oA0 .44 00-Z a)0 0

C- 4)4. Z - r-O r-g -4)-.

u c.4 0' 0' N Nu NW- 444
o3 CUf U) > U -4 04 0

E- t ol U)0-0
w C)U 0 00 4 -' 0 4-4

0: C).b ul* U) -14 00
-,I CL CJZO w (a0 a4 10 1.
> 004 0) 0) m0 C) -4M rC E a

0

>4.

0)N

04 4J'
00

04N
I 04

00

16

All of the models have a common thread. Each

requires information from the specific organization wishing

to estimate future software costs. No one formula has been

derived that can be of immediate use for all organizations

(15:140-142). Some companies have the know-how and

resources to produce software at a lower "per line" or

"per project" cost than others. Therefore, the input fac-

tors for each company will be different.

The National Bureau of Standards reported that

"software maintenance can account for up to seventy percent

of each software dollar allocated" (13:65; 26). The

increase in maintenance over development costs is two-

fold. Once a system is placed into production its main-

tenance costs will take away from the total ADP budget

for every year that the system is used rather than just a

one-time development charge. Secondly, maintenance has a

"ripple" effect on other lines of code within the same

software system (11:102). Every line changed affects other

lines of code, "snowballing" the changes needed. Once the

changes have been made, the program has to be retested and

the documentation updated (11:102; 18:4). Over time the

changes cause a degradation in the quality and structure of

the software, which increases the rate of future problems.

All of these changes consume maintenance resources (11:102).

"17

Section III

Maintenance Programmers. Software development

projects are usually staffed with a specific mix of per-

sonnel skills to meet the requirements of the application

development. People with different skills are assigned at

the various phases of the development to take full advan-

tage of their expertise. In contrast, all maintenance

activities for a particular software product are often

performed by one person, acting as requirements analyst,

designer, coder, and tester. Although this is not always

the case, the separation and assembling of a certain mix

of skilled individuals is more typical during development

than during maintenance (24:11) .

Experienced programmers generally prefer to develop

new systems rather than work on software maintenance.

Therefore, inexperienced programmers usually are assigned

to work in the maintenance shops to repair the defective

programs. This places the responsibility for an important

piece of software "on the shoulders" of someone with very

little knowledge of the program and little experience in

all the aspects necessary to keep it running. Often, the

new programmer either is promoted out of the shop or

becomes so dissatisfied from the work pressure that he

quits. This places the burden of maintenance on someone

else, starting the cycle all over again (23:11).

18

Wr

Most software systems are maintained by a differ-

ent staff of programmers than those who developed the

original code (13:74; 24:1,11). This is a major factor

in software maintenance where the software is on avezage

ten years old (30:1). People move on, especially in the

Air Force. The usual assignment for programmers is four

years. The knowledge that took years to develop about a

system usually leaves with these individuals. The

"corporate knowledge" in the organization concerning a

software package can be a tremendous aid to the mainte-

nance programmer in understanding a system and making the

necessary changes in the software. Most large data process-

ing organizations have their development personnel in a

different section from their maintenance personnel. Indus-

try studies have shown an annual turnover of 28 percent of

the personnel in a data processing shop. The reduction of

a stable programming staff negatively affects the corporate

memory of the organization. The increased work load of

unfamiliar software in turn can affect the morale of the

remaining programmers (2:807).

All of this can lead to increased downtime on

programs needing maintenance (29:5). One way to relieve

same of these problems is to provide effective programming

tools such as better documentation for the maintenance pro-

grammer. Training to use these tools is especially impor-

tant since it not only relieves dissatisfaction but can

19

AA-AAA-

increase the programmer's effectiveness and efficiency.

This can be critical when short time constraints are

involved (2:808).

Management and User Influence. A National Bureau

of Standards study identified management second only to

costs as a significant aLea of concern in terms of software

maintenance. The management problems involve:

1. Managing/recognizing software mair4 inance as

a separate function

2. User and upper level management's perception

of software maintenance

3. A lack of goals, standards, and criteria to

judge performance (metrics)

4. Managing the user interface

The report concluded by stating that the significance of

software maintenance was not recognized historically

(24:13).

Management and the user exert significant influence

in software maintenance. Software maintenance can be

viewed as successive iterations of the development phases,

but its uniqueness should be recognized to insure effect-

tive management (24:11). First, management must realize

the difficulty of maintenance tasks. Management can influ-

ence software development and maintenance since it manages

the motivation/reward system of the organization as well as

20

the budget, i.e., promotions and salary raises. The indi-

viduals in the progranming offices in turn will plan and

develop those requirements dictated by management (27:49).

Management is driven by user wants since computer

support is service oriented. If the user understands that

structured coding and documentation will aid in debugging

software problems years from now, then the user can

request management to enforce these standards. Management

in turn can develop the plans needed to control the organi-

zation and its products (2:807). Therefore, training users

to understand the "costs" of their requests in terms of

time, money, personnel, resources, and quality of product

will influence the type of requests received in the future

(33:67).

Air Force Issues. Although presented frcm an indus-

try viewpoint, all of these issues reflect current situa-

tions in the Air Force that affect software maintenance.

In some cases, the problem is getting worse because indus-

try programmer salares are higher than Air Force programmer

salaries. Many Air Force programmers leave, placing a

greater burden on the remaining Air Force personnel (9:51).

AFR 26-1, Manpower: Manpower Policies and Pro-

cedures Comparative Cost Analysis, stipulates "Positions

that have direct combat support tasks under contingency or

War Plans, but indirect combat support tasks in peacetime

21

must be identified as Military Essential." If these situa-

tions require Air Force programmers, then the only remain-

ing resource available to the organization for additional

programming or maintenance will be the contract programmer

(10:64).

Section IV

Dornumentation. Documentation of software is

another tool that has had tremendous influence on software

maintenance. Software documentation is the single most

effective tool for software maintenance (14:1; 32:13;

8:132,134; 1:42). Studies have shown that documentation

is not being accomplished for all programs (4:115). It

takes time in the development stage to write good documenta-

tion. That time and the resources involved could be used

to develop additional software. The trend in both industry

and government has been for management and the programming

office to set documentation aside (29:5).

Since maintenance programmers depend heavily on

the documentation to beccme familiar with a system and

since maintenance costs are much greater zhan development

costs, software documentation can be considered an invest-

ment that saves time and resources (32:13; 13:74). Auto-

mated software documentation programs are available but do

not provide sufficient information for maintenance per-

sonnel. However, same documentation is better than none

22

as long as it is current (8:142). Documentation must be

updated when software changes are made or the documenta-

tion becomes obsolete. Worse yet, unrevised documentation

can be misleading and thus further increase the rate of

decay and time needed for software modification (33:23).

Software Quality Assurance. Software quality

assurance has received a great deal of publicity in the

1980s within industry. Software quality assurance is

important in the area of maintenance because it emphasizes

developing products that perform correctly when turned over

to the user. This means the "corrective" errors will be

reduced for the maintenance programmers. Software quality

assurance begins with the premise that certain qualities

are desired in a finished product. Within the Air Force,

reliability and maintainability are highest on the software

quality assurance priority list. Software users need to

understand that specific qualities or "factors" can be

built into software but only at certain costs. Some soft-

ware qualities build on other qualities while others con-

flict and degrade (21:24). A table defining these quali-

ties and how they affect each other can be found in Appen-

dix G.

No one wants tc develop an inferior product but

quality is a concept that involves not just the programmer

but everyone from the program manager to the operator.

23

Software quality assurance advocates that plans, metrics/

standards, and controls/reviews be implemented to insure

that desired quality factors are assured (27:1,3).

Configuration Management. Configuration manage-

ment is the management of change (13:149). It consists of

four functions: identification, configuration control,

status accounting, and auditing (24:34). It is based on

a concept that software, tightly controlled, reduces the

choices of inadvertent mistakes. Mistakes such as modifi-

cation of software without an associated documentation

update or inadequate revision testing can increase future

problems for the softwarc- and, in turn, the time and

resources to fix it (13:149).

In terms of testing, configuration management deter-

mines how much time and money will be spent "debugging" the

errors. This is due to the error discovery cost rate. As

efforts are made to find errors many will be found early,

but it takes longer and longer to find the remaining

errors. See Figure 2-1 (13:61).

TsM

Fig. 2-1. Error Discovery Rate (13:61)

24

The first 95 percent of the errors may cost little in

terms of dollars and time. But the last 5 percent of those

errors may cost more than the first 95 percent (15:41).

See Figure 2-2 (5:40).

A I

mum --- M

I SA,

-, I I ' -
lQMW cm QW000"M AmmrM~ • O M

Fig. 2-2. Increase in Cost-to-Fix or Change
Software Throughout Life Cycle (5:40)

A decision has to be made as to when testing stops

and produiction begins (13:61). Programs will reach a point

where they have become obsolete and further revision is

useiess. At this p mnt the software program must be

rebuilt (7:1). management and the configuration management

shop must determine how to best manage the organization

with its associated responsibilities and resources (31:36).

25

Use of software cost estimation can indicate the limit of

cost effectiveness for use or rebuilding (11:101-102).

Since management determines how to utilize organi-

zational resources, management should develop procedures

for the organization to follow. This can begin with a

simple plan of who does what function in information sup-

port or can develop into a highly structured organization

with offices specializing in input/output control, tape

libraries, software maintenance shops, etc. (24:34).

Metrics. "You cannot manage what you cannot

measure" is a basic tenet behind the development of soft-

ware metrics (18:1). Metrics are standards or measures

that can be applied to measure the effectiveness and effi-

ciency of software and related factors such as testing and

doc-=mentation. The National Bureau of Standards has listed

several areas of software maintenance metrics. Appendix I

contains these lists.

Relating this to software cost estimation,

Henderson and Sullivan stated that "you can't measure what

you don't keep data on." Not only should the metrics be

developed and used but the information derived should be

archived for future reference.

Off-the-shelf Software. With the growing costs

in software development and maintenance, many companies

are turning to ccmunmercially available or "off-the-shelf"

26

software to meet specific organizational needs (17:744).

This type of software can be purchased from the computer

hardware manufactuirer or from a third party vendor. "Off-

the-shelf" software has benefits and handicaps. On the

beneficial side, "off-the-shelf" software usually costs

less than developing and maintaining unique software.

"Off-the-shelf" software is available now and not after

several months of development work. On the negative side,

"off-the-shelf" software may not meet all the needs, may

not be available for the organization's computer, may not

have training available in its use, and may not be main-

tainable due to vendor policy such as restricted documenta-

tion (17:744).

27

S -- ~~'% ~ Vý

III. Research Methodoloqy

This chapter will discuss the procedures used to

collect and analyze available information in order to

satisfy the research objectives proposed in Chapter I.

Specifically, it focuses on data collection by means of a

literature review and a statistical analysis of the infor-

mation contained in the Air Force Information Systems

Designator (ISD) database.

AFR 700-19 Database

To adequately assess the software costs in the

Air Force several methods were prcposed. The first method

involved contacting every command for information on costs.

This was deemed inappropriate due to the time constraints

of the thesis. The second method examined the Major Com-

mand Information System Plan (MISP) required by AFR 700-2

for Air Force commands. Research at the historical

archives at HQ Air Force Logistics Command (AFLC) of

several command's MISPs shcwed that maintenance costs are

not recorded at this time. Maintenance costs are not

required in current MISPs. The third method involved find-

ing an established database with this information. The

Data Item Designator database at Air :orce Systems Command,

Electronic Systems Division (.XFSC/ESD) was examined. This

28

Pr r

database covers "embedded" software rather than the ADPE

software systems used in large-scale data processing

computers being examined in this study. One AF database

was finally found. AFR 700-19 established the Information

Systems Designator (ISD) database maintained by the

Standard Information Systems Center (SISC), a specialized

computer center for the Air Force Communications Command.

The AF ISD database was created in the 1960s to provide

specific information on AF software for large automatic

data processing (ADP) systems. At that time, the database

was a part of the AF 300 series regulations and known as

the Data Systems Designator (DSD) Database and maintained

by Data System Design Office headquartered at Gunter AFS,

Alabama. The purpose for the database was to share part,

if not all, of the software between organizations with

similar software requirements. This shared software would

reduce duplication of effort and software costs. All AF

commands are required to report this information for their

active systems. Today, this database includes software of

all types of application systems except embedded and classi-

fied. SISC at Gunter AFS, Alabama is now responsible for

publishing and managing this information under Air Force

Regulation 700-19.

The procedure works in the following manner. After

defining a needed software capability, an organization

would examine their copy of the ISD database for any

29

possible compatible software systems. The organization

would then go directly to the owner of the functionally

equivalent software listed in the database to obtain a

copy. If both organizations use the software, then the

second organization must also register with SISC. If

nothing is found, the organization can develop the soft-

ware for their use and then register it with SISC for the

benefit of other organizations.

Specific Data Fields Used

SISC assigns a unique identifier called an ISD

for each software system submitted to this database. The

separate ISDs list primarily a description of what the

software does. In addition, many fields are included in

the record stating language used, hardware used, user

command, development costs, maintenance costs and more.

A listing of all the fields contained in this database is

found in Appendix D. After studying this database for

analysis, specific fields were examined for this study.

These fields are:

1. YEAR--this data element lists the year the

software was placed in operation.

2. CONTRACTOR--this field is either a one, two

or a blank. One means the software was at least 50 percent

contractor developed. Two means the software is commer-

cially developed or "off-the-shelf" software. A blank

means the software was deve]oped within the Air Force.

30

3. COMMAND--this field states the primary user

command.

4. LANGi--this field states the primary program-

ming language used. In several large software systems,

more than one language was used. Since the records did

not break down the size or cost by language, only the

first language would be used for this category.

5. LINES--this field lists the number of lines

of code in the program(s).

6. DEVCOST--this data field gives the development

cost of the system when it was put into operation.

7. MANCOST--this final data field lists the

accumulated costs for maintenance work since the software

was placed into operation. This field is updated yearly

although no field indicated the last year of update.

C2mputer Support

The ISD database is designed to be a report

generator. The records and fields are variable length.

SISC does not perform any statistical analysis on this

data; it is used only to give a description of that ISD

record. Since this study examined the size and costs of

the software, verification of the costs was desired. The

data is required to be sent to SISC from the ccmmands and

changes are to be updated yearly. Although SISD verified

that the data sent for this study was the same as their

31

database, all attempts to verify this data fron a second

source were unsuccessful. It cannot be assumed that the

data is accurate neither can it be assured to be in error.

Therefore, the results of this study art only as good as

the data available.

In order to accomplish statistical analysis,

another database was built on the AFIT Classroom Support

Computer (CSC) using the information extracted from the

ISD database. The CSC is a Digital Equipment Corporation

VAX computer with the Virtual Memory Storage (VMS)

operating system. This computer system was used because

of the availability of the "SAS" statistical. package.

"SAS" is a copyrighted statistical package that allows data

to be analyzed and reported in several different ways in

the same computer run.

One of the first steps in the analysis required a

frequency count of the number of occurrences of the pro-

gramming languages, the various commands, and the number of

programs developed under contract or off-the-shelf soft-

ware. It was decided that to be a representative sample,

thirty examples of the field being examined must be

present. A copy of the statistical program is found in

Appendix B.

32

Research Objective One

The first objective, what has been the change in

AF development costs over time, will be answered by

analyzing the difference in the cost per line of code over

time. After being examined as an AF total per year, the

data will be analyzed according to the programming language

used, by the AF user command and, finally, contractor soft-

ware development costs. Examining the total Air Force

development costs, 1342 examples were available from the

years 1955 through 1986. The number of lines of code

developed during a specific year was divided into the total

development costs for that year.

Total Development Cost/Total Number of Lines

= Cost per Line

Most of the data was studied by year. If a record

did not list a specific year in the year field, that

record was deleted from further analysis in the development

cost, since it could not be placed into a specific year

category. This resulted in 254 records being deleted from

further analysis.

Air Force commands were required to report the

development and maintenance costs with their ISD informa-

tion. If actual costs were not available, AFR 700-19 pro-

vided a formula for estimating the costs of $20 per line

of code for development costs and $80 per line of code for

33

,2

maintenance costs. There is no indication in the records

of whether the actual costs or the AFR 700-19 formulated

costs were reported to SISC. Although some of the ISD

records may list costs above the actual costs, just as

likely some costs would be below the actual costs.

Averaged across the 1600+ records, it is likely that the

overall costs per line would be close to the true actual

cost of AF software per line.

The average cost per line of code for each cammand

is generated by the total cost for that command divided

by the total number of lines of those systems. This same

procedure will be performed for each programming language

used to give the average AF cost by year per line of code

for that language.

Research Objective Two

The second objective, have these development costs

shown the same increase independent of the AF command or

the programming language used, will build on the first

objective. Where objective one looked at actual numbers

and cost per line, objective two will look at total dollar

trends. SAS will be used to build charts showing develop-

ment costs compared over time. The year-by-year progres-

sion will be shown on the same chart. Charts showing com-

bined AF, unique programming language, and specific

commands will be built. The detailed numbers will be

34

available for in-depth comparison of the cost ratios com-

pared to lines of code.

Research Objective Three

Objective three, what have been the costs of soft-

ware maintenance for these systems, is similar to objective

one except that maintenance costs will be examined instead

of development costs. Again, the categories will be the

cost per line of maintenance work as a whole within the

AF, then the programming language used, the user commands

and, finally, contracted software. The analysis will then

proceed year by year to look for any indication of rising

or lowering at an unusual rate.

Total Accumulated Maintenance Costs/Total Number of Lines

= Cost per Line

If any year showed unusual figures, a table list-

ing the specific category and year will provide further

information to clarify the peculiarities.

From this analysis, the cost of Air Force software

maintenance should be found and a comparison against con-

tractor costs can show which is the most economical. Since

the industry average costs are already known from the

literature search, analysis of the Air Force costs can also

provide a comparison in several ways, between the Air Force

versus industry and contracting versus industry.

35

As with the first and second objectives, the fre-

quency count will be used to decide on the specific lan-

guages and commands to examine. For additional comparison

in the event of unusual findings, all remaining languages

will be placed in an "other" language category and the

remaining commands will be placed in an "other" command

category for analysis and comparison against the specific

languages and commands.

Research Objective Four

Objective four, have maintenance costs shown the

same increase independent of the AF command or programming

language used, will be examined in a similar fashion to

objective two. Here, the purpose is not to look at the

efficiency or inefficiency in the maintenance costs, but to

look at the total volume effort--the quantity. The total

maintenance effort will be examined within the Air Force

year by year. This will be sorted by languages for analy-

sis then resorted and analyzed by commands to see if any

particular unusual costs are found. Finally, the con-

tractor software will be analyzed as a whole and by year.

This information, placed on a graph, should show total

costs and trends in maintenance cost.

Research Objective Five

The final objective, what differences are shown

between development and maintenance costs, analyzed as

36

were the previous objectives, will show whether Air Force

maintenance costs are greater than the development costs

for the same systems. If this proves to be the case, then

this would show a trend similar to that in industry.

The literature search found industry software maintenance

costing at least as much as the development costs. The

Air Force costs for development and maintenance may not

equal industry's, but if the percentage differences between

Air Force development to maintenance is similar to indus-

try's development to maintenance ratio then the same

problems occurring in industry may be 'occurring in the

Air Force.

If the analysis of the data shows that the Air

Force software maintenance is similar to industry's then

the methods, techniques, and problems in industry may be

the same as the Air Force's. Improvements in industry may

be used to reduce the maintenance costs in the Air Force

well.

37

IV. Research Observations

To better understand the costs of Air Force soft-

ware, analysis of the cost and size data from a computer

software database was categorized and totaled using the SAS

statistical package. The details and analysis are pre-

sented here.

To begin the analysis of the database, the SAS

frequency option was used to categorize the data. The

frequency option gave a count for each occurrence in each

field. Table 4-1 shows the different commands represented

with their respective frequency count. Thirteen commands

contain enough samples to be selected for individual analy-

sis. The remaining commands were grouped into an "other"

command category for comparison. The thirteen commands

are Air Force Accounting and Finance Center (AFAFC), Air

Force Communications Command (AFCC), Air Force Logistics

Command (AFLC), Air Force Systems Command (AFSC), Air

Training Command (ATC), Air University (AU), Data Systems

Design Organization (DSDO), Electronics Security Command

(ESC), Military Airlift Command (MAC), Pacific Air Forces

(PACAF), Strategic Air Command (SAC), Tactical Air Command

(TAC), and United States Air Forces Europe (USAFE).

38

TABLE 4-1

COMMAND FREQUENCY COUNT

Command Frequency Commnand Frequency

AAC 11 ANGSC 1

AFAA 1 ATC 68

AFAFC 27 AU 48

AFCAC 1 DCA 13

AFCC 240 DLA 1

AFCOMS 2 DNA 1

AFCOS 1 DSDO 30

AFDSDO 1 ESC 49

AFESC 1 JCS 2

AFIS 16 JDA I.

AFISC 5 JDSSC 4

AFLC 394 MAC 153

AFLZ4C 6 MMSSA 1

AFMEA 1 PACAF 62

AFMPC 6 SAC 130

AFMSC 11 SPACECMD 20

AFMSMET 1 TAC 92

AFOTEC 2 TACC 2

AFRES 4 TPSC 21

AFSC 96 USAF 5

AFWL 1 USAFA 5

ANG 1 USAFE 63

39

Table 4-2 shows the different languages and their frequency

count. The languages were handled in a similar fashion to

the commands. Three languages, Assembler, FORTRAN, and

COBOL, had enough samples for each individual study. The

remaining programming languages were grouped into an

"other" language category.

TABLE 4-2

LANGUAGE FREQUENCY COUNT

LANG1 Frequency LANGI Frequency

AFOLDS 5 GMAP 22
ALGOL 3 JOVIAL 10
APL 3 PASCAL 1
ASSEMBLER 54 PL/l 5
BASIC 20 RAMIS 1
BASIS 1 RPG 3
COBOL 1185 SIMSCRIPT 6
DAD 3 SIS 1
DBMS 4 TURN-KEY 1
FORTRAN 197 UTILITIES 58

UTILITY 1

Research Objective One

What has been the increase in development costs

over time?

To compare these costs, two additional standards

were developed in addition to the industry average men-

tioned in Chapter II. The total AF cost per line was

calculated from the total number of lines and total devel-

opment costs. The second standard was developed for each

40

language or command. In both cases the "years developed"

was ignored. This table is shown in Table 4-3. Develop-

ing these standards using the total records regardless of

year is important to the database because several hundred

records lacked "year developed" preventing these records

from being categorized for analysis. With the total

records for development costs calculated, the records could

be categorized and compared against these three standards

(industry, AF, category) over time. Tables were built for

the languages over time and commands over time. These can

be viewed in Appendix E. Graphs showing the cost per line

changes over the various years can be found in Appendix C.

AF Total Cost. Examining the cost per line of

code, the AF developed cost per line of code is found to

fall below the industry cost range of $50 to $200. This

cost was calculated by dividing the total development cost

by the total number of lines.

$1,241,355,956 / 653,760,528

= $1.90 per Line of Code

The calculations on the cost per line year by year showed

the cost in the high teens until 1972, at which time it

dropped into single digits. One exception occurred in

1962 with $233.60 per line of code. Examining this

exception, it was found that the total development cost was

41

AI
?-140 r- 0 O V-4 0 0 -l4 OO4 0

E--4

4 0 0 ý4 C4 Q C%4 m -4 0 -4 Z 4C nv >4.~ >4-
>4

0

zU

>4

U t 4

E-4I~
GzD

4' r4 -l r-4 f0 . O-4O~ \ 04 r-4 r l A

r-4 -14 r- e-L- n

42

'r *4 -" -

not high compared to the other years but the nwi'ber of

lines of code was unusually low which boosted M.he price

per line. Although SISC verified their data, this cost

was caused by a large HQ MAC development cost. The other

two commands that showed development costs in 1962, AFCC

and AFLC, averaged $20 and $18.68 respectively. This means

that excluding the HQ MAC software system, 1962 followed

the average with the other years, 1955 to 1971.

Programming Languages. Examining the languages

next, Assembler, COBOL, and FORTRAN had enough examples to

list each as a unique category. All other languages were

grouped together into an "Other" category. Refer to

Appendices C and E for the related graphs and tables.

The Assembler category had fifty-eight records

through 1985 and only eight of the fifty-eight assembler

programs listed as operational before 1975. The total

Assembler cost per line of code was $2.70. Generally, the

cost per line was higher than the Air Force average of

$1.90 per line of code.

The COBOL language was the largest category,

with 1185 records, of the four language categories

observed. Dividing the total development cost by the total

number of lines gave an average development cost per line

of $11.08. The development cost per line for years

1955 to 1961 rose above $20 per line. Looking year by

43

year for thirty-one years, the costs never rose above

$34.98 per line. Again, this is below the $50 to $200

per line range in industry.

The FORTRAN programming language had 197 records

with a total cost per line average of $.47. Thirty-one

records were removed from further analysis because of

insufficient data in the year field. The 166 remaining

records covered the period from 1962 until 1984. Comparing

against the total AF yearly average, programs written in

FORTRAN were higher overall than the yearly average. A

major factor for the low overall development cost per line

is due to one system written in FORTRAN in 1972 by AFCC.

This command had a system containing 500,000,000 lines of

code at a cost of $100,000,000. If this system is removed

from the calculations, the FORTRAN cost per line rises to

$15.95.

The final category examined is the "Other" cate-

gory. Here all the languages that did not contain at least

thirty representative systems were grouped together for

analysis.

The "Other" category contained 128 systems with a

total cost per line of $5.23. This is almost three times

higher than the AF total average of $1.90 per line. Com-

paring year by year, the "Other" category had higher

overall costs.

44

NI I 1

Command. The development costs were also examined

by command. Thirteen commands contained enough systems to

be examined separately and the remaining thirty-one repre-

sentative commands were placed in the "Other" category

for a combined analysis. Refer to Appendices C and E for

the graphs and tables.

The first command examined, AFAFC with twenty-

seven examples, had a total average cost per line of $16.71

which is above the total Air Force average.

AFCC had 240 systems registered in the database.

The average development cost per line was $.31. This was

the lowest command total development cost per line and far

below both the AF and industry cost per line. A major

reason for the low ccmnmand total cost per line is the

500,000,000 line system developed in 1972 at a cost of

$100,000,000 and a 50,000,000 line system developed for

$120,000 in 1975. These two systems had a major effect

not only on AFCC but on the AF yearly and total cost per

line. Twenty-five years were represented and during most

of those years, AFCC was below the AF yearly cost per line.

AFLC's file contained 394 systems which was the

most for any command. Only thirteen of AFLC's systems were

deleted because of an incomplete year field. AFLC had a

total average of $11.61 per line which is well above the

AP total average. Examining each year found that AFLC

exceeded the AF yearly average fifteen times, was below

45

the AF yearly average most years, but was always below

industry costs.

AFSC had over 2.5 million lines of code in ninety-

six systems giving an average cost of $19.52 per line for

development. During a twenty-year period, ninety-two

systems were listed as active.

ATC excluded only three of its sixty-eight systems

due to a mission year field. The total average cost per

line was $1.77 which is slightly below the AF average cost

per line. ATC costs year by year were overall below the

AF average.

AU had forty-eight systems with an average cost

of $2.77 per '.ine which is slightly higher than the Al
average. Only thirty of the systems indicated a specific

year with a time span of sixteen years. AU's year-by-year

costs were below the AF yearly averages.

DSDO, now known as SISC, had thirty systems listed

covering a five-year period. The total average per line

of code cost is $19.41 or ten times greater than the AF

total per line cost. Only five of the thirty systems

listed a year in the required field. SISC year-by-year

averages also exceeded the AF year-by-year averages.

The next conmand examined was ESC with forty-nine

ccmputer software systems with a low total per line average

cost of $.68. Only thirty-eight of the systems could be

analyzed by year due to missing data in the year field.

46

ESC's systems are relatively new suggesting that the cost

would be higher than earlier systems developed elsewhere.

This was not the case. Every year lists a lower yearly

average per line cost, except 1982 with $5.37, than the

AF total average per line cost.

MAC had the third largest sample with 153 systems

averaging $16.65 per line of code. This is almost nine

times greater than the AF average cost. Only five MAC

systems lacked a year identifier with the remaining systems

covering a twenty-year period. Of these twenty years

analyzed, most were above the AF total. The yearly average

cost per line was skewed in 1967 due to a large development

cost on one system. If that system is removed from the

calculations, the per line cost for that year is reduced

to $20. The same situation occurs again in 1970 with

similar results when changed. Overall, the per line costs

are well within the range of AF costs, although they are

below the average in all cases for industry.

PACAF was unusual to analyze because it had sixty-

two systems registered but only twenty-two of them listed

the year developed. Of these twenty-two, fifteen were

lacking development cost and two lacked the number of lines

in the system. With the remaining information for the

command, the total average development cost per line was

calculated to be $1.67. This is slightly below the AF

total average cost per line. Every one of the four years

47

available for comparison were below the AF yearly average

cost per line. All four were below three dollars per line.

SAC was examined next. The 130 systems covered

1963 through 1985, although twenty-two systems lacked

appropriate information to categorize by year. SAC's total

average cost per line is $16.65. This is nearly nine times

greater than the equivalent AF cost per line. For the

twenty years examined, SAC's cost per line was above the

AF average yearly cost most times. Only one year, 1972,

fell in the same range as industry's.

TAC had ninety-four systems listed which averaged

$17.51 per line. This is over nine times greater than the

AF average. Only seventy-one of these systems listed the

year developed covering the thirteen-year period. These

thirteen years were mostly above the average.

USAFE is the final unique command examined. It

contained sixty-three records which gave a total average

cost per line of $5.03. Only fifty-six records had the

year indicated. These records covered twelve years. The

USAFE yearly total cost per line exceeded the AF yearly

total cost per line about half the time.

Finally, the remaining commands were grouped

together under a heading of "Other." This added up to

126 records covering twenty-nine commands. Their combined

records gave a total average per line cost of $8.68, over

four and one-half times larger than the AF total average

48

cost per line. The records covered a total of twenty-one

years from 1965 until 1985. During this period, the

"Other" category exceeded the AF yearly average cost per

line about half the time.

Contractor Developed Software. Examining the costs

of development for contractor-developed software, sixty-

seven records in the database were at least 50 percent

contractor developed. They give a total average develop-

ment cost per line of $29.25 which is almost seventeen

times. the AF equivalent. However, this is below industry

average costs of $50 to $200 per line of code. It would

be expected that contractors would account for their costs

more along the lines of industry than the AF.

Research Objective Two

Have these development costs shown the same

increase independent of the AF command of the programming

language used?

To examine the rise in software development costs,

the costs were graphed by year and placed against a

standard y-axis of $200,000,000. Looking at the combined

AF graph shows a cyclical but steadily rising software

development cost.

Programming Language. Looking at the various

languages, Assember did not really show enough of a

49

pattern to draw any conclusions. See Appendix F. The

chart indicates that assembler costs are declining. This

may follow with the emphasis towards use of higher order

languages in computer systems.

COBOL systems were well-represented and showed the

same pattern as the AP chart, cyclical but steadily rising.

FORTRAN indicated just the opposite. Costs are cyclical

but diminishing which may indicate either reduced cost per

line of FORTRAN, smaller programs, or less use of FORTRAN

for system development. The "Other" category shows only a

small period which may not be a full cycle. These costs

appear to be diminishing as well. See Appendix F.

Command. The commands show more of a continuous

flow in development costs rather than a cyclical rise.

AFCC, SAC, and TAC do show occasional peaks but most, like

AFLC, indicate a budget with computer systems being devel-

oped when they can be fitted into that budget. Air Force

organizations have requested increasing software support

over the past thirty years. Budgets were increased accord-

ingly which allowed ADP offices to provide the resources

needed. Large projects though were multi-year development

projects and the way the costs were recorded only showed up

in the AFR 700-19 database when the computer systems were

placed into operation. This in turn showed up as peaks on

the graphs.

50

]- U.r % .. A ' .ýP7 6, A'-71

Research Objective Three

What have been the costs of software maintenance

for these systems?

As with research objective one, objective three

began comparisons by first developing additional standards.

The total AF cost per line was calculated from the total

number of lines and total maintenance costs. The second

standard was developed for each language or command. in

both cases, the "years develop-d" field was ignored. See

Table 4-4. This is important to the database because

several hundred records lacked "year developed" preventing

these records from being categorized for analysis. Now

the records could be categorized and compared against these

three standards (industry, AF, category) over time.

Specific tables were built for the languages over time and

commands over time. Refer to Appendices C and E.

AF Total Cost. Examining the cost per line of

code, the AF accumulated maintenance cost is found to be

much lower than industry averages of $50 to $2000. The

total number of lines of code written was 653,760,528.

The total maintenance costs for these lines was

$1,489,294,836 or $2.27 per line of code.

Programming Languages. Examining the languages

next, Assembler, COBOL, and FORTRAN had enough examples

to list each as a unique category. All other languages

51

~ ,a.~ ~ k*. ~. &Ž -J4 ~&\hb.Nk

,5ý1 V-4 z r-4

0

2
E-4

Da r-4 ;z

z

00

u~~
4.).

colwL 0 lwr- "a v ý 52Dýý

were grouped together into an "Other" category. The graphs

and tables are found in Appendices C and E respectively.

The Assembler category had fifty-eight records

through 1985 with only eight of the fifty-eight assembler

programs listed as operational before 1975. The total

Assembler cost per line of code was $2.08. Generally, the

accumulated maintenance cost per line was lower than the

Air Force average of $2.27 per line of code.

The COBOL language was the largest category of the

four language categories observed with 1185 records.

Dividing the total accumulated maintenance costs by the

total number of lines gave an average maintenance cost per

line of $22.24.

The FORTRAN programming language had 197 records

with a total per line average of $.25. Thirty-one records

were removed from further analysis because of insufficient

data in the year field. The 166 remaining records covered

the period from 1962 until 1984. Comparing against the

total AF yearly average, programs written in FORTRAN were

higher than the yearly average thirteen out of twenty-two

years and lower than the average nine years.

The final categcry examined is the "Other" cate-

gory. Here all the languages that did not contain at least

twenty-seven representative systems were grouped together

for analysis. A listing of the various languages can be

found in the frequency table in Table 4-2 (page 40).

53

ai

The category "utilities" or "utility" actually contained

many different languages so these were placed into the

"Other" category despite having fifty-nine representative

systems. The "Other" category contained 128 systems with

a total cost per line of $2.99. This is only $.80 higher

than the AF total average of $2.19 per line.

Command. The maintenance costs were also examined

by command. Thirteen commands contained enough systems to

be examined separately and the remaining thirty-two repre-

sentative commands were placed in the "Other" category for

a combined analysis. Refer to Appendices C and E for the

charts.

The first ccimand examined, AFAFC with twenty-seven

examples, had a total average cost per line of $29.84 which

is well above the total AF average of $2.19. During the

twelve years examined, AFAFC exceeded the yearly AF average

maintenance cost per line for eight of those years and

the remaining years were below the AF yearly average.

AFCC had 240 systems registered in the database.

The average maintenance cost per line was $.21. This was

the lowest command total accumulated maintenance cost per

line and far below both the AF and industry cost per line.

AFLC's file contained 394 systems which was the

most for any command. Only thirteen of AFLC's systems were

deleted because of an incomplete year field. AFLC had a

54

total average of $17.75 per line which is well above the

AF total maintenance average of $2.19.

AFSC was the next command examined. This command

had over 2.5 million lines of code in ninety-six systems

giving an average maintenance cost of $21.82 per line.

During a twenty-year period, ninety-two systems were listed

as active. The AF yearly average cost per line was

exceeded about half the time.

ATC excluded only three of its sixty-eight systems

due to faulty year fields. The total average cost per

line was $4.10 which is almost double the AF average main-

tenance cost per line. ATC was below the AF average most

of the time.

AU had forty-eight systems with an average main-

tenance cost of $4.25 per line which is almost double the

AF average. Only thirty of the systems indicated a spe-

cific year with a time span of sixteen years. Most years

were below the AF yearly total average.

SISC had thirty systems listed covering a five-

year period. The total average per line of code cost is

$70.14 or thirty-two times greater than the AF total per

line cost. Only five of the thirty systems listed a year

in the required field. Four of the five years were above

the AF yearly total average.

The next command examined is ESC with forty-nine

computer software systems with a low total per line average

55

-.. , _

cost of $.17. Only thirty-eight of the systems could be

analyzed by year due to missing data in the year field.

ESC's systems are relatively new suggesting that the cost

would be lower than earlier systems developed elsewhere.

This appears to be the case. Every year lists a lower

yearly average per line cost than the AF total average

per line cost.

MAC had the third most systems registered with 153

systems averaging $39.40 per line of code. This is almost

eighteen times greater than the AF average cost. Only five

MAC systems lacked a year identifier with the remaining

systems covering a twenty-year period. Of these twenty

years analyzed, thirteen were above the AF yearly total

average cost. The yearly average cost per line was skewed

in 1967 due to a large maintenance cost on one system that

did not have a listing for the number of lines of code. As

found in the development analysis, the other system for

that year used its lines of code figure in the calculations

for both systems. If the first system is removed from the

calculations, the per line cost is reduced to $4.70. The

same situation occurs again in 1970. By deleting the com-

puter system without the number of lines of code, the main-

tenance cost per line is reduced from $2107.43 to $1120.

Overall, the per line costs are well above the range of

AF costs and within the range for industry averages.

56

PACAF was unusual to analyze because it had sixty-

two systems registered but only twenty-two of them listed

the year developed. Of these twenty-two, sixteen were

lacking maintenance costs and two lacked the number of

lines in the system. With the remaining information for

the command, the total average maintenance cost per line

was calculated to be $.24. This is below the AF total

average cost per line. Every one of the four years avail-

able for ccmparison was below the AF yearly average cost

per line. All four were below threc dollars per line.

However, since these systems are relatively new, mainte-

nance costs may not have had time to accumulate.

SAC was examined next. The 130 systems covered

1963 through 1985, although twenty-two systems lacked

appropriate information tc categorize by year. SAC's

total average cost per line is $27.56. This is nearly

thirteen times gzeater than the equivalent AF cost per line.

For the twenty years examined, SAC's cost per line was

above the AF average yearly cost twelve times. Seven years,

SAC's per line cost were in the same range as industry's.

Surprisingly, in the year 1982, SAC had already accumulated

enough maintenance costs to boost the per line cost tu

$716.57. This was the highest maintenance cost in 1982

of any of the commands.

TAC had ninety-four systems listed which averaged

a per line cost of $6.14. This is almost three times

57

greater than the AF average. Only seventy-one of these

systems listed the year developed covering a fourteen-year

period. Of these fourteen, nine of the years were less

than the AF yearly average.

USAFE is the final unique command examined. It

contained sixty-three records which gave a total average

cost per line of $1.36. Only fifty-six records had the

year indicated. These records covered twelve years. The

USAFE yearly total cost per line for ten years was below

the AF yearly total cost per line.

The remaining ccmmands were grouped together under

a heading of "Other." This added up to 126 records

covering twenty-nine commands. Their combined records

gave a total average per line cost of $15.76, almost seven

times larger than the AF total average cost per line. The

records covered a total of twenty-one years from 1965 until

1985. During this period the "Other" category exceeded

the AF yearly average cost per line thirteen times.

Contractor Maintenance Costs. Finally, examining

contractor maintenance costs shows a total average main-

tenance cost of $12.70. This is almost six times greater

than the AF total maintenance cost but far below the indus-

try average. Most of these systems became operational in

1981. or later which may explain the lesser amount. Main-

tt ance costs have not been able to accumulate for these

58

IA.~~~~~~~~ ~ ~ A.X.= IUL6J _- 1.ýý-L. 1-

systems. The year-by-year analysis showed that contractor

maintenance costs exceeded AF maintenance cost six years,

were equivalent three years and below the remaining six

years. These were below the industry averages in all but

two years, 1965 and 1966, which may be a reflection of the

extreme age of the systems and the continued accumulation

of maintenance costs.

Research Objective Four

Have these maintenance costs shown the same

increases independent of the AF command or the programming

language used?

The data was placed on graphs and examined for any

patterns. Initially it was thought that maintenance costs

would reflect a decrease over time; that is, a steadily

decreasing line from 1955 to 1986. The logic behind this

was that the oldest system would have accumulated the most

costs in the maintenance category. This is not the case

as can be seen in the total AF graph in Appendix F. The

explanation appears to be that the oldest systems tend to

be phased out leaving only a few systems to graph. At

the same time, the newer systems being more numerous would

show a greater combined maintenance cost.

Another way of showing this would be to take the

total maintenance cost for that year and divide that

number by the difference between 1986 and the year

59

~.Lou%& Ni A.'& F~LA.~ ~ . .U A ul ~ ~ J ~~. ~p~

developed. This gives the average amount spent each year

for the systems developed during a specific year. Perform-

ing this on every year in the total AF maintenance cost

table shows a cyclical but steadily rising amount.

This method also shows how much on average that

the AF will spend this year, 1986, for all the systems

listed in AFR 700-19. If none of the systems is removed

from inventory, the combined amount is $236,339,850 spent

on maintenance for all the active systems listed.

It was noted in this analysis that maintenance

costs for these systems generally exceeded the development

costs. This supports the industry claim that maintenance

costs are the greater part of the total life cycle costs.

These systems are still operational so they will continue

to accumulate maintenance costs, raising the percentage

over time. Looking at the year-by-year total AF costs,

twenty-one of the thirty-one years examined had greater

maintenance costs than development costs. See Appendix F.

Programming Language. Examining the data further,

the costs recorded for systems developed in Assembler showed

total development costs equivalent to total maintenance

costs. The year-by-year analysis showed maintenance above

development four years, below six years and equal one year.

COBOL showed 66 percent of the total life cycle costs to

be maintenance. The year-by-year analysis showed

60

twenty-six of thirty-one years to have greater maintenance

costs than development costs. Systems written in FORTRAN

showed greater development costs than maintenance costs.

Of the twenty-three years listed, twelve years had greater

maintenance costs. These statements seem contradictory;

however, closer examination shows that the FORTRAN systems

had several extremely large development costs. This skewed

the comparison, overall, but not in the year-by-year

analysis. The "Other" category showed development costs

greater than maintenance costs overall and for eight of the

fifteen years on record. See Appendix F.

Command. The individual canmands showed the same

situation. AFAFC had greater maintenance costs than

development costs and for eight of the twelve years. AFCC

had lower total maintenance costs. In fourteen of the

twenty-five years examined, the maintenance costs were

equal to or greater than development costs. AFLC showed

greater total maintenance costs and for yearly totals in

twenty-one of the twenty-seven years of data. AFSC had

greater total maintenance costs and yearly totals for

thirteen of twenty years. ATC showed almost twice the

total maintenance costs to total development costs. In

thirteen of nineteen years, maintenance was either equiva-

lent or greater than development. AU showed total main-

tenance costs to be 65 percent of the total life cycle

61

costs. Of the sixteen years, eleven years had equivalent

or greater maintenance costs. SISC, with only a small

sample to use, showed maintenance accounting for 77 per-

cent of the total life cycle costs. Four out of the five

years also showed greater maintenance costs. ESC with its

relatively new systems showed greater development costs

both for the totals and in three out of six years. MAC

followed the majority of the ccmmands with greater total

maintenance costs and for yearly costs for seventeen of

twenty-one years. PACAF had much lower maintenance to

development costs for both the totals and for every year.

SAC's data shows greater maintenance costs for the totals

and for eleven of twenty years. TAC showed greater total

development costs. Ten of the fourteen years showed a

greater developmert costs for TAC. The final command

examined, USAFE, had lower total maintenance costs overall

and for every year examined. The "Other" category had

greater total maintenance costs overall and for fifteen

of twenty-one years. See Appendix F.

Research Objective Five

What differences are found between the development

and maintenance costs?

Combining the information of research objectives

one with three and research objectives two with four

showed that maintenance costs are indeed greater than

62

development costs in most cases despite the ccmnmand or

programming language. See Appendix E for the tables and

Appendix F for the graphs.

63

..

V. Conclusions and Recommendations

Conclusions

The purpose of this thesis was to examine soit-

ware maintenance costs in the Air Force on large scale com-

puter systems. With the continued dependence upon com-

puters, software costs have escalated at an alarming rate.

Of major concern is the even greater increase in the cost

of software maintenance. This increase has demanded an

increasing amount of limited Air Force resources for com-

puter software.

This study has shown that Air Force software main-

tenance costs have risen as have all industry-wide soft-

ware maintenance costs. They now account for over 50

percent of the software life cycle costs. Generally, the

older a computer system the more maintenance it requires.

Therefore, the Air Force can expect to see a continuing

rize in its software maintenance costs. The average age

of Air Force software is ten years three months but some

are as old as thirty years.

Air Force and AF contractor maintenance costs are

generally less expensive than costs for the so'tware indus-

try as a whole. Contractor costs are still larger ove.L-1l,

than maintenance costs for AF developed systems. Despite

this, contractor maintenanrce programmers have some

64

•4"~ ~ ~ ~ ~ ~ ~ ~~~~~~~A ? : "•€•••4.°p -. -A.•. Jk K - •.. . .••- .A..•.-..

advantages over AF programmers. They have developed long-

term familiarity, experience, and system skills that are

unavailable to AF personnel. Air Force personnel, with

three to four years per duty station, do not have adequate

time to develop those skills in maintaining coxnputer sys-

tems that are ten to thirty years old. Therefore, con-

tractor software will continue to be an important factor

in future software maintenance.

Research Objective One. What has been the increase

in development costs over time? The information in this

study has not shown any appreciable rise in software devel-

opment costs over the last thirty years. In fact, the Air

Force-wide development cost per line in 1955 was $20 per

line. The same cost in 1985 was only $4.11. The costs

during this thirty-year period fluctuated but the last

six years were all under $10.

Research Objective Two. Have these development

costs shown the same increase independent of the AF command

or the programming language used? From 1955 to 1985, the

total Air Force development costs rose from $2,661,500 to

$63,037,789. Over this thirty-year period the costs had

a cyclical but steadily rising amount. Assembler and

FORTRAN showed a decrease in use while COBOL and the "Other"

languages have shown large increases. The various com-

mands listed showed cyclical but steady increases in their

65

software development costs except for MAC, PACAF, SAC, and

TAC. The use of contractor developed software also showed a

steady rise from $1,553,100 in 1955 to $14,808,317 in 1984.

Research Objective Three. What have been the costs

of software maintenance for these systems? In general, the

analysis of the data has not shown any rise in maintenance

cost per line. The analysis of the data has shown a

decrease in the Air Force cost per line from $82.10 in 1955

to $5.45 in 1985. Assembler, COBOL, and FORTRAN showed

total decreases in the maintenance cost, although these

costs showed a one dollar increase from $4.80 in 1964 to

$5.80 in 1984. Contractor costs went down from $64 in 1965

to $17.44 in 1984. All of these costs were well below the

industry's average of $2,000 per line of code.

Research Objective Four. Have these maintenance

costs shown the same increase independent of the AF command

or the programming language used? This area of analysis

showed that the oldest systems have accumulated some large

maintenance expenses over the years. The rate at which

these costs are increasing is also rising over time. Where

some software systems required thirty years to accumulate

maintenance costs equal to the development costs, software

systems developed as late as 1985 have already accumulated

maintenance costs equal to or greater than the development

costs. The accumulated maintenance costs for 1955 were

66

$10,926,057 for thirty years while the systems developed

in 1985 have already accumulated $83,642,709 in maintenance

costs. All four language categories showed cyclical but

steady increases in the rate at which systems accumulated

maintenance costs. Also shown for the four languages was

a greater rate of growth in maintenance costs for the

newer systems than for the older systems.

An analysis of maintenance costs of the four cate-

gories; Air Force, languages, commands, and contractor,

revealed two things. First, commands showed strong

cyclical tendencies but revealed no significant findings.

Second, maintenance costs on contractor developed software

increased at a lower rate than maintenance costs on Air

Force developed software. The money spent each year for

software maintenance for thirty years worth of software,

averages out to $23,339,850 per year. This includes

systems operational in 1986 that fell into this thirty-

year period.

Research Objective Five. What differences are

found between the development and maintenance costs? This

thesis has shown the maintenance cost rising at a greater

rate than development. Just as software costs in industry,

maintenance costs have become greater than development

costs. This means that maintenance, which is a continual

cost, will take a larger and larger share of the

67

* ~ A

organization's software budget. This was true not only

for the different languages but for most of the commands

as well, except for ESC, TAC, and USAFE.

The total maintenance costs for contractor devel-

oped software were lower than the development costs. This

may indicate that the software did not require as much

maintenance as Air Force developed software.

Limitations of Research

The reader should understand that the actual

figures given in this database for development and main-

tenance costs appear very low compared with industry costs.

Verification of the data during the research proved impos-

sible. Without this verification, several questions were

raised. First, if the computer system's costs show figures

similar to the $20 and $80 development and maintenance

estimates respectively, does this mean t&hat the organiza-

tion did not record their costs? AFR 700-19 stated in the

directions to multiply $20 by the number of lines of code

in the system to give the estimated development cost.

The maintenance cost was derived by multiplying $80 by the

number of lines in the system. Second, if the organization

used the maintenance cost formula from AFR 700-19, did the

organization multiply the cost by the total lines of ccde

or just the lines of code changed?

68

Contractor developed software showed a higher cost

per line than Air Force developed. Several factors could

cause this. First, contractors are driven by profits.

They must charge more than their costs. This would

usually mean that contractor developed software would cost

more than Air Force developed. It could also be caused by

better tracking of costs on the part of the contractors

than just more efficient programming on the part of the

Air Force. Also, the fact that the contractor developed

software had a lower percentage of maintenance cost to

development cost than the Air Force may indicate more

effective software development or better maintainability

built into this software.

"Off-the-shelf" or vendor supplied software cost

benefits could not be shown due to an inadequate sample

size.

At the present rate, based upon this study and

tha literature search, an increase in the software budget

and the nunber of programmers will be required to maintain

the present development efforts. This is due to the

increasing software maintenance requirements placed on

organizational resources.

Reccmmendations

Several recommendations are being made as a result

of this thesis. First, the purpose and intentions of

69

AFR 700-19 should be evaluated. The current purpose is to

serve as a software clearinghouse. Nevertheless, this

database is the only database in the DoD and AF that con-

tains software ADPE cost data. This thesis has shown that

the data contained in the ISD database does not accurately

reflect true software development and maintenance costs.

This database could be of immeasurable value to the

AF if three following actions were implemented:

1. Modify the database to contain fixed length

fields with well-defined values for each field. This

thesis analyzed only a small subset of the fields available

in this database. AFR 700-19 contains many fields, besides

the ones used in this thesis, that describe the hardware,

software, and users of a computer system. This information

can provide essential but currently unavailable cost

analysis in many areas of AF ccmputer software. Well

defined data fields would help ensure validity of the data.

2. AFR 700-19 should be modified to reflect morc

rigorous procedures for collecting and reporting software

development and maintenance costs. This would ensure that

the data submitted by the major commaands is more correct,

complete, and consistent.

3. SISC should develop a set of statistical analy-

sis to track software cost trends. This information could

then be used by the major commands to more effectively

allocate software resources.

70

Second, it is recommended that commands define the

responsibility for implementation of the AFR 700-19 method-

ology to collect and document their cost data. Referring

back to Henderson and Sullivan, "You cannot control what

you do not measure (emphasis added]" (18:1). The costs

derived in this thesis indicate that the conmands .o not

have this inforrnation readily available and indeed they

may have used the formula provided in AFR 700-19 instead.

These methodologies must be concise because prograr'ners

have better things to do than fill out accounting forms.

Automated accounting or "tracking" programs are becoming

common today for a wide variety of hardware systems. These

programs could be used to acquire the specific information

needed for AFR 700-19.,

Third, it is recommended that in the interim, until

vi.lid cast data can be acquired, commands with rising

maintei.nce costs take advantage of the information in

Chapter II to reduce costs. Appendices G, H, and I provide

a more in-depth discussion of these concepts.

La-st,. it is recanmended that continued research

be performed on Air Force software maintenance to answer

two questions:

1. What benefits occur through improvement of

maintainability of existing software?

2. What benefits are received through emphasizing

mairntainability of AF software during software development?

71

Appendix A: Definition of Terms

Software Maintenance--the performance of those activities
required to keep a software system operational and respon-
sive to its users after it is accepted and placed into
production. Maintenance does not include coverting soft-
ware from one machine to another or from one programming
language to another (15:7). Software Maintenance can be
broken down into three areas:

a. Perfective--all changes, insertions, deletions,
modifications, extensions, and enhancements made to meet
evolving and or expanding needs of user. (Ex - making code
easier to understand, improving documentation, optimizing
the code, adding a new capability.)

b. Adaptive--all changes which are initiated as
a result in changes in the environment. (Ex - new version
of an operating system, new peripheral added to a computer
system, new version of a compiler.)

c. Corrective--all changes necessitated by errors
in th? system. (Ex - quick fixes and firefighting, aborts
because of inability to handle inputs.)

There is a great deal of overlap between these activities,
and the skills required of programmers are similar.

72

-.1 • • • r - - -" .- *

Appendix B: SAS Program

COPYRIGHT (C) 1985 SAS INSTITUTE INC., CARY, N. C. 27511,
U.S.A.

NOTE: VMS VERSION OF SAS RELEASE 5.03 AT AIR FORCE INSTI-
TUTE OF TECHNOLOGY (03855004).

NOTE: LICENSED CPUID MODEL = 11/780, SERIAL =01384A2A.

DATA THEFILE;
INPUT ISD $ 1-5 YEAR 6-7 CONTRACT 9 COMMAND $11-22
LANG1 $ 23-34

PROG 35-40 LINES 41-50 DEVCOST 51-63 MANCOST 64-76;
IF CONTRACT=1;
IF C-OMMAND=' 'THEN COMMAND=' OTHER';
IF COMIbAND='AAC' THEN COMMANID=' OTHER';
IF CO!O&AND=lAFAA' THEN COMMAND='OTHER';
IF COMMAND='AFAF' THEN COMMAND=-OTHER';
IF COMMAND='AFCAC'1 THEN CONMAND='OTHER';
IF COMMAND='AFCCMS' THEN COM-MAND='OTHER';
IF COMMAND--'AFCCS' THEN CCMKA.ND-'OTHER';
IF COMMAND'IAFDSDO' THEN COMMAND='OTHER';
IF COMMAND= 'AFESC' THEN COMMAND='ESC';
IF COMM.AND='AFIS' TH1EN CCI4MAND--'OTHER';
IF COMMAND='AFISC'- THET COMMAND='OTHER';
IF COML4AND='AFLCM' THEN COMMAND='AFLC';
IF COMMAND='AFME.A' THEN COMMAND='OTHER';
IF COMMAND=' AFMF-C' THEN C)MMAND=' OTHER';
IF COMMAND='AFMSM~ET' THEN COMMAND='OTHER';
IF COMMAND='AFMSC' THEN COMMAND= IOTHER' ;
IF CO.MMAND='AFOTEC' THEN COM.MA4D='OTHER';
IF COM2MAND=' AFRES' THEN COMMAND=' OTHER;
IF COMMAND=-'AFOiTEC' THEN COMNAND='OTHER';
IF COMMAND='AFRES' THEN COKMAND='OTHER';
IF COMMAND='AFWL' THEN COMMAND='OTHER';
IF COMMAND='ANG' THEN COMMA±ND='OTHER';
IF COV.MND='ANGSC' THEN COi~4AND='OTHER';
IF COMMAND='DCA' THEN COMMAND'IOTHER';
IF COMMk.ND='DLA' THEN COMMAND=' OTHER';
IF COMMAND=' DNA' THEN COM4AND='OTHER'
IF COMMAND='JCS' THEN CCN?ý4AD='OTHER
IF COMMAND='JDA' THEN COMMAND--'OTHER
IF CO,%DAND=bJDSSC' THEN COMMAND='OTHER;
IF COMMAND='AFIT' THEN CO0MM.AND='AU';-
IF COMMAND='DFSEC' THEN COMMAND='OTHER';
IF COMMAND='DSDO' THEN COMMAND='DSDO';
IF COMMAD='MMSSA' THEN COMMAND='OTHER';
IF COMMAND&?MED SYS DIV' THEN COMMAND='OTHERI;

73

IF COMMAND=' SPACECMD' THEN COMMAND='OTHER';
IF COMMAND='TACC' THEN COMMAND='TAC';
IF COMMAND='TPSC' THEN COMMAND='OTHER';
IF COMMAND='USAF' THEN COMMAND='OTHER';
IF COMMAND='USAFA' THEN COMMAND='OTHERt ;
IF LANG1='AFOLDS' THEN LANG1='OTHER';
IF LANG1='ALGOL' THEN LANG1='OTHER';
IF LANGl='APL' THEN LANG1='OTHER';
IF LANGl='BASICI THEN LANG1='OTHER';
IF LANGl='BASIS' THEN LANC1='OTHER';
IF LANG1=&DAD' THEN LANG1='OTHER';
IF LANGl='DBMS' THEN LANG1='OTHER';
IF LANGl='GMAP' THEN LANG1='OTHER';
IF LANG1='JOVIAL' THEN LANGl='OTHER';
IF LANG1='PASCAL' THEN IANGl='OTHER';
IF LANG1='PL/1' THEN LANG1='OTHER';
IF LANG1='RPG' THEN LANG1='OTHER';
IF LANG1='RAMIS' THEN LANG1='OTHER';
IF LANG1=' SIMSCRIPT' THEN LANG1='OTHER';
IF LANG1='UTILITY' THEN LANG1='OTHER';
IF LANGl='UTILITIES' THEN LANG1='OTHER';
IF LANG1=' 'THEN LANG1='OTRER';

CARDS;

PROC SORT; BY YEAR;
PROC PRINT;

BY YEAR;
VAR LINES DEVCOST MANCOST;
SUM LINES DEVCOST MANCOST;
FORMAT LINES DEVCOST MANCOST;

PROC SORT; BY COMMAND YEAR;
PROC PRINT;

BY COMMIAND YEAR;
VAR LINES DEVCOST MANCOST;
SUM LINES DEVCOST MANCOST;
FORMAT LINES DEVCOST MANCOST;

PROC SORT; BY LANGi YEAR;
PROC PRINT;

BY LANG1 YEAR;
VAR LINES DEVCOST MANCOST;
SUM LINES DEVCOST MANCOST;
FORMAT LINES DEVCOST MANCOST;

74

III hll, ~

Appendix C: Cost per Line Comparison Graphs

Appendix C contains the graphs of development and

maintenance cost per line over time for total AF, the four

language categories, selected AF commands, and contractor

developed software.

On the graph, development cost is represented by

a solid line. Maintenance cost is represented by a dashed

line. This legend is used on all the graphs contained in

this appendix.

75

4-

4ý14

0.-.

-rr
-~ 0'

- - - , _%o

0*' I

-..-

-
---. '-

>.1E4m. .
N0

""0

-- 1,,I__..w:

- --.-

77. ' I '-M-

_-7- - 0

•-y - - - 4-

-'I

2a)

4-)

0~)

4-'1

78

- 2-

"-- --. ... _-• . - -(

-,,-

J J ; I 1 - , I -- ,0 ----

-o-.-1- - - M --.-

C.)

3 ~ 0~ 0 3 3~ ~ ~0 i •,-~ *~ '~ .3 .0 d .j~ 4 4 - -. ~ .- 1

CI

800

/ E--

m 00

810

-. ®

0

-
.. •-*---

-

I • i I' 0)

inc
" " /

- C

7-R7

- - i/ "- K
---- - . -I

* lC)

83.. . . _ N - O

•.• • 8-

- - E

i..-

--

-- 0
0*'
C)

-. -j U

C)
N

' K
N 'K

" "'

C)
N -

N C

S '�

C' -
-4

C)

4-J

�O �O .fl 5 4 -J .5- -. = "-I = U

84

-/ -. ..

.0

..

85

7''

ao In

86

E-1

SU0o

-,a ýl CIAe

0)

Ua)

0

87

i. .

2o•

2oo

t 2

'nL

la)

E-

89-

MQ1ML
p~ a

_- .

II

s•'J 0

SoC

U•

'~' 0~ 0 ' 0 ~ 0 ' 0

S•, • • -• 4, 4 $ • • •

90i

mC

E

'00

-4

91

L4

922

0'0

u

-4

NE.

'00

ON. V-1.

93

-,,

71-

C-4C

94*

S0

-E-4

-- - 0

0

In~

95U

/ -

Appendix D: AFR 700-19 Database Description

1. Information System Designator

11. System Ccde

III. Title

A. Acronym

B. Sensitivity

C. Criticality

IV. ADPE

V. Type System

VI. Responsible offices

A. ADPS

B. ADS

C. Development Center

D. Air Staff Functional OPR

E. Collateral Users

VII. Interface withi other Systems

VIII. Documentation Reference

A. Comiputer Operation Manual (OM)

B. Users Manual (UM)

C. Implementation Date of System

IX. General

A. Progranvning Languages

B. Number of Programs

96

C. Lines of Code

D. Processing Mode

E. Transition

X. Commercial Software Used

A. Vendor

B. Title

C. Acquisition Basis

D. Cost

XI. ADS Investment Costs

A. Initial Development Cost

B. Maintenance Co3t

C. Total Cost thru FY 84

XII. Authorizing Directive

XIII. Functional Description of System

XIV. Research Results

97

Appendix E: Tables of Cost Totals

Appendix E contains tables developed from the

data. It is organized according to category and year. The

number of lines of code developed during that year, the

total development cost, the development cost per line of

code, the accumulated maintenance cost for the systems

developed that year, and the maintenance cost per line of

code. This information is organized by total AF, the four

language categories, selected AF commands, and contractor

developed software.

98

E.1

(L A CA~ bl r h1 w N N4 - -#

9-C
z r~(4- l ow ONi -, v w 0. 0 0'- N A, 0l O ld U

N f, CA PI t0.AA. l)N (9 .t 1 1-

CA410 N 00C I0 ,0. r ,F .

2--

z' -
-"

.. 'CA - - ~ - -fq -q q - -C

4 E-4

c: o v,, n ;7,0 11~ 0' Vi- -00 Vir 0' '0'.04 'D C,' IM
0 Tt- 'a AD ' r14 C 01

r Ii -: 0!:.II .. II.

t. 'C , -0 40N q i 1 0' in A-AM r v - , c r ; N 0

(4t N-t4-P -0 N ' -In g0tC MV 0 0

a0

c. o r, ,w .0P, N VO M N4Ire. .in " o4N i' "' A,0o4 C
0 t, 0. M CJ0 4 OD V) (P. f 0 a. -W N 0Q W It 43 0 Vi r, 9)P 0

-jZ U - C4'~ 0N qC 4~ V 0' VVi ('I. W55 i N N7)

0- . i - t) in
to -O0 '

W ý r, K.-C~ c-ti ,co p. rac f .NN NN NN N W 0 D5 AD- n -

99

w I.I Ix

K I (A

-wu- 4'CC

"O".C 1 '.oC

- ~N0

.0 CA

..). C
190~. CA - C (4

u

In 0 .

9911

0 in

- U CI .C 3 C ,C
': (ID N 0(

> Q t, I CD -4

W Viq991NWO~l~OI~ 0

100 .r.NC~CC

&rw, .AlxýW%"u . aiAx 1 04 Xd t ? AW.' & A tfA-&&A ýM~t % U rMbM UUrWýi9-~

-a. W'I~- or. ~ JEN ') n a. e

2 0
r 0

4 CAPNA, C 1 DC
CA r, 'aC N

u ~ f4 ~ ~ ~ . ~ N ~

o. 0 ,n0. m0 0. -.--- 0. M .'-rP Z ~ o. .

-tj (P v to r. - A AC CDIt 0- C -0 v C -0 N -

>1

00

- v
A. C!.E- r .1

0; P:w bo.M, 0 V, a. rCI A 4. v v~ o- in oC5 to

An r4 - 0~U

P)mar-,. r 0 V) 0r- 0 N 0' Z43 W 0. m*7, ~
N 0- orr - 1 11~ rri CA 11 , .e~r) 4~q. M- H ,w Q a

0' 1: 0C P, 'I',CAVl-rd 4 4D1 0 ý 4 o

101

K. !zC.1 -a e

cO Qn I 0,1 4 K .0 P, P, M N0 C 4 M

~a bI 0

#0(. 4' 0 - 0 -I e. N

.0 ~ ~ ~ ~ ~ 1 .` ,NN (

Z~ ~ CD F)e0 MJa~ N t,.04 -8
f nilit r, n @ I 0. P N m i4

NNI~ ~ .. Df 0w0 W q - Ie
-vN -- -0t :re 4oo w1 t) P0j ,i

in 'VT~ -De

1C2

0! U!

D CA C . Ai 0. .v) 4 to I C

.4•

z W-m CD0 m 0-

w .;1®.. .

UW

IL CA 0

I- 0 1- 1 C N CA P AD

L)(. a C aI ol 03 1-~ . .0

-(I

(t-

-1 O, 0

0 0

4 0 AD 4 v 4U4
0 0 0

F, -0 *0 V
0-N ti CALO v;,n o 4 Mt

(4 bi - D

CA

103

w

X. W!. ..

I- ~ . uI pi C
2-1

C4 -N P
w ("

00 0

I. z 0

0

*(U4

10

or , 1r, a-c a dri-4 Cs)-I

L61e

U ~ . -ti0" NO oN i ~ - 4 I

*1 i

z-.. 0,.0 AO0 2 W iP ,0

Cl C

Z '0

V 2 -4;1 0' 0 0 In ~ 0 W 00 0 04 . -rri N 7N ~ YO~I Nrtrs

0-~ 4 -

I-, r. 'N440 r, to I to

"- ý -70 E . ~
*4 . ao

0
11 " 17 .0 1-t0 Vi a P 11 11 P) 0NFtI N

10 cFr, P . rg . OW Y W l~ F). 0i)'' C,
u 0 to 04 .0 0OU -W.0 0 C, WO 4P)I.-

- - ii c--ri- o- - - It-

Ml S

W a 4 .0 .044.OF'N 'rK.F KFF OCO 0 0

0

105

U I
ODJ Q 0 r-t , . in -o Kl c- .V 11 1. ~to.

2--

-0 t C?

-. 0 0 10 t .: _ .= 0 I

S.--

2 DP
"I 4)

~~~ * ir t?4t F 0.

0

p -4 P& o

- o - O ?0 4 F -4 P, a~ 4 'are 4'a"F,

-l K 4o11af, c t P Vb C-, 'S .04 (',4f. o,1
-OPI .0 .0. . af

106



ww

w U

%L ;7-*c 9ar

C, a)

C,

0

lz (4..400

z 9

W;r*0 0,~'' -1 i.0D0,C P . 0aq 0 Er

w~C C~CN f . ~ S 44IN

00

107



w W
(, t, f, rs r- -tt' r, b t,

z -

b;C -)6 I 4 ý t4 SIN bIt 1 l C4Z~

CD 1- V CP P P

2 44eitOP-w-O ~-

'Z N1 c el 4 1- - l4 1qV I4
11 o' N -o m r4II' CYlbNO 141 -4

~~~c ai - -rI 0N

0

. 4-4

0 ~In o!0
SI~~C

(D-C S

CD C f- SI v 6 0P(DwIn

-o 4 -00 C

E-4

0
I-.

108

CL , %I r. ' F '0r

ICo

100

9j W

~0

c.)

5- 0ý4P o0 ;. C

C P)- - - VI

00

109

-I f 4 1

I--

-"': "U)
-I =~ 4 - • •

0

S* *

0
UU

CD 0-

9 . - 0

.* ° * .6.1

00

110 o l-

4,"

110

WL

CD

"" z
K 01

- • ..•

• P' . .-p O.O..-.O. . . . -

0N

C 4 ," IF n

0

o U1

W~~ 0 09(
111-

wD

SrCd~i N

wc o,:.- Q!

U .0)
V0

ui

z'
t, 0 NW M

U ~t"

0

0 in P,))

u 3 0

-JE-4

112

ID OD~i 0V N a! N - 0

c 0 ~N bi0bi0 c (n 0

(4 4Inc~oc N Cp .0b) N 0 .b1

~~~~ 0N0 C4v@ v ~~4

~ 4C 0 -04 q 4pn Cr0 -NC

114: 14 Pl 0 0

P, rv) 0 4 N N( 0 C4

00

1 .13

U.~~~~'M Nf N 41WL QP -1 V-



4 CD -

S a.

Ul to

-,- cl, ~
C.4 -41

to c z W)

"- .o-

0

-C4 C4,l

114



4CF4

', I. F,1P

z 2 N~ 0 -- 4 *

; I~ -. 0 N &0'4 D0 N 41
N (4 t4 T40 "1 11 Ic P)

0
C4 CA

N

* * '4.4

0

(DCo V4 0'C ?
-ýC - E*4

0

115



-w

p 0 0

U' Q

.. W0.wrp~t C! aý VSi (L

Ow, C CaG -W~r. S CA i ow In

u twr4 f, C0NN 1 V-I #I
NA -- iC

o o: 0 0 0 0 0 9 0 N '

Ci 4) Cl c CAI~ wml4
u q ic O i UIW 70A

0 4 (DI-Z
* lb 0D4

AD I.

116d



* 0

.. . .bbI. .. .. . . . S. . .

W 00

0

"44

nEme In D -44

.0

*~q .E-4

to ro. to,

117



0 - .a0 C, OD-9 c.

r.~

w 0 M P, C0

. . N r. 'P~ . Q.. . . .

z 1 12 - ~ ! -:

VV in W- &

0 - -u> - On

0

N r4

- v VP~- v

u f, 00n0

4.-

S 0 w0 .~ o. t'o C. V-V.W

118



Appendix F: Graphs of Total Software Costs

Appendix F contains the charts comparing the devel-

opment and maintenance cost per year over time for total

AF, the four language categories, selected AF commands, and

contractor developed software.

On the chart, development cost is represented by a

solid bar. Maintenance cost is represented by a diagonally

slashed bar. This legend is used on all the charts con-

tained in this appendix.

Ii

119

a g 0 g D '-P .W - --.- W



----- - ----

-- %~W~ -------- ----

* V 4

~44

120



___________ --_ -_---- __-_-------

E-4

"I"
0

0C

121



- . .. 0

Ci

ISl

~-

Cii

0,

122

OX



03
* 44

1~- UeI

1231



40 M991 OOL'OO6L~S -----

Ir

4-

41I

00

00

00

124

• o



0

CiC

125L

I L~b AL.Ql



D

-4J

0 0 0

I

don

126

I 126

!4
•.-• ••3- " • •o3 ,:% •.••' • .%':W ' . .% • •.• • '•• '% ,• •, .2 '•' -- %'.,'&A • . , '• •• -•A "h•, ' 0]



m

E
0..

u

C- 0

S 0 0

N - N

127



V)

r- .amm 66-19-Ze.s

4-1

144

0

E4.

0

o o h

kA . I' ' 'C



0
E-4

0

'U

0 0 0

129



S 0

"-4

01

00

1 0

(*) gv~1En

1300



a
'0

a
a

C-)
* r.n
U

U)
* Co

o
o

* 0
C.)

.0

.9 (0
4)

- (0

U
-� 03

$4

I
* 4�)
.0

0
p. c/�
.0

-d

4)
0

*
.0

- '4-4
0
(0

.0 04

o
'0 $4

(3

S

I. i
.9

(t� �

131

�' "5. 4� Jy< ' � �v�.*g ,�. �. -; �



10

C 0 0

Ci

132



U)

o

U

CO)
0 0

41

" 0

I..I
4.4
0

133--

C- -



FA

u

.il

- ci)

* 4:

0

1%

i °E--

,0C 0

e oa

Ct:
S) S :10 34

134l



sw (

e C0

,. 0

W

* cn

o

0

0

1350

SS } 511v•.•o

SItt4

!1 :: -
SN'-4



91 ------
'21i:184'r

U4

02

~ U)

CtC

1364



U4.

Q 0

41

E.'-4

0
CD

Ctn

; C.7

137

* • 0



080:6 it - I

0

144

0)

9I

O 0

o 038



0

4-4

0

U)1.

ý$) SlVIV~IO

139



Appendix G: Software Quality Assurance
Factor Tradeoffs

Factor Definition

Correctness Extent to which a program satisfies its
specifications and fulfills the user's
mission objectives.

Reliability Extent to which a program can be expected
to pertorm its intended function with
required precision.

Efficiency The amount of computing resources and
code required by a program to perform a
function.

Integrity Extent to which access to software or
data by unauthorized persons can be con-
trolled.

Usability Effort required to learn, operate, pre-
pare input, and interpret output of a
program.

Maintainability Effort required to locate and fix an
error in an operational program.

Testability Effort required to test a program to
ensure it performs its intended function.

Flexibility Effort required to modify an operational
program.

Portability Effort required to transfer a program
from one hardware configuration and/or
software system environment to another.

Reusability Extent to which a program can be used in
other applications--related to the
packaging and scope of the functions that
the programs perform.

Interoperability Effort required to couple one system
with another (21:22).

140



[ CiteionDefinition Aelated
Factors

Trutceabdir)' Those attributes of the software that Pro- Correctness

vide a thread from the req~uiremnents to the
implementation wtth respect to the specific
developmentn and operational environment.

Compoiereness Those attributes of the software that pro- Correctness
vide fu!I implementation of the functions
required.

Consistency Those attributes of the scifrtart that pro- Correctness
vias uniform design and implementatioei Reliability
techniques and notation. Maintainability

Accuracy Those attributes of the software thit pro- Reliability
vide the required precision in calculations
anti outputs.

Error Tjevunc 2 Thoaw attributes of the software that . ro-. Reliability
vide continuity of operation undt. non.
nominal conditions.

simplicity Those artrioutes of the software th: pro- Reliability
vide implementation of functions it- the Maintainability
most unclertandiz~ie manner. ;Us 411ly Tesilabi -y
avoidance of practices which inc., _.ise corm-
plexity.)

Modularity Those attributesi of the software that pro- Maintainability
vide a structure of highly independent Flexibility
modules. Testability

Port. oilaty
Reus.bilitV
Interoperabsitty

Generaliry Those atrtibute's of the software that pro- Flexibiloty
vide breadth to the functions performed. Reusability

Expandabdity, Those artnbutes of the software that pro. Flexibility
vide for expansion of data storage re-
quirements or computational f unctic ns.

Instrumentratin Those attributes of the software that pro- Testability
vide for the measurements of -isage or
identification of errors.

Self- Those attributes of the sof-tware that pro- Flexibility
Descriptiveness vide explanation of the implementation Maintainability

of a function. Testability
Portabilit I
Reusability

(21: 25)

141



Cn'tenion D66"n16017 Related

Factors

Execution Those tirtri-butes of the Software that pro- Efficiency
Efficiency vide for minimum processing timne.
Storage Efficiency Those antributes of the software that pro- Efficiency

vide for mninimumn storage requirenients
during operation.

Access Control Those attributes of the sotwere thaat pro- Integrity
vido for control of thte waccss of software
and data.

Access Audit Those attributes of the softwAr, that prp-. fintegrity
vide for an audit of the access Of Softrwor
and data.

Operwbkr1' Those alttrbutes of the software that deter- Usability
minae operation and procedures concerned
with the operation of the software.

Training Those atrinbutes of the software that pro- Usability
vide transition from current Operation or
initial familiarization.

Commnie~cativenes Those attributes of the software hat pro- Usability
%nide useful inputs, and outputs wn~icrt carb
be assimilated.

Software Systemr Thotise attributes of the sofrware that deter- Portability
Independence mine its dependency on tne software en, Reusabulity

vironment (operating systems. utilities,

Machine Those attributes of the software that daeter- Portability
Independence mnine its dependency on the hardware Rteusability

thtyrstetm.erbit

Communications Those attributes of the software that pro- Interoperability
Comrmonaliry vdthusofstandard protocols and

interface routine,. ta r- vananblt

DaeCrtinfr hs Iiue fth otaeta r- Itrprblt
vie h ueofsanar at142eena



--- w y- R

T".

~00

01 0

V, ~ -, IO

p00

~~14-

nag&0-



Appendix H: Definitions of Maintenance Activities

Requirements Analysis

Evaluation of the impact of a change in requirements or
the reason why a current requirement is not satisfied.
Determination and assimilation of the current software
documentation necessary to understand the nature of
the change required.

Design Analysis

Evaluation of the impact of a modification and develop-
ment of a strategy of redesign. A decision typical of
this activity is whether a portion of the system has to
be redesigned or whether the modification can be made
within the context of the current software architecture.
Also included is an evaluation of modification to the
data base design.

User Interface

Activities associated with interacting with the user/
customer. This activity may involve formal documenta-
tion, meetings, and walkthroughs, etc.

Design Review

Formal or informal review of the design analysis
activity.

Problem Report Recording and Control

Includes all activities associated with how users
report problems, how problems are logged, assigned
priority, response time, and closed.

Configuration Control

Includes all activities associated with maintaining
baseline version of code.

Data Base Modification

Modification made to data base structure and individual
data values.

144



I

Code Modification/Recompilation

Changes made to code by programmers to repair an error
or to enhance the operation of the system.

Code Debugging/Module Testing

Includes testing after code changes have been made and
investigative debugging, i.e. testing to identify where
an error source is.

Subsystem Testing

Testing groups of modules or programs to assess whether
modifications have been made correctly.

System Testing

Tests run to determine if new version of software, due
to corrective, perfective, or adaptive maintenance,
operates correctly. Typically called regression test-
ing if some set of test cases/test data used. Accept-
able ccmpletion of these tests is usually the basis
for fielding the new version of the system.

Documentation Modification

Activities including changes to system specifications,
users manuals, maintenance manuals, etc., made as a
result of modification to system.

Standards Audit

Activities performed to insure new version of system
and documentation meet established standards prior to
fielding.

Code Inspections/Walkthroughs

Review of modifications to code.

Test Data Generation

Development of test data to verify and validate code
changes.

Management Planning and Control

Management activities related to planning, control, per-
sonnel assignment, prioritization of jobs, personnel
requirements estimation, budget estimation and control,
scheduling, etc.

145



Field Delivery

Activities associated with fielding updated system.

Software Support Development/Maintenance

Development and maintenance of tools used in support-
ing above activities.

Hardware Support

Procurement and maintenance of hardware system used as
maintenance facility.

Administrative Support

Secretarial, data entry, and clerk support to main-
tenance personnel (19:9-12).

1
146



Appendix I: Metrics of Maintenance

Basic Measure of Maintenance Activities:

1. Number of Lines of Code/Number Modified.
2. Number of Data Items/Number Modified.
3. Number of Modules/Number Modified/Number Added.
4. Number of Functions/Number Modified/Number Added.
5. Number of Interfaces/Number Modified/Number Added.
6. Number of Requirements/Structure Changes/Number

Changed/Number Added/Links Changed.

Measures of Maintainability of System:

1. Traceability--Measure of traceability from require-
ments to code.

2. Consistency--Measures of use of standard data
definition, naming, documentation conventions
and Requirements Consistency.

3. Conciseness--Halstead's Length/Effort Measures.
4. Modularity--Lines of code by module profile Called/

call matrix.
5. Self-description--Number of ccmments/[.OC.
6. Stability--Myer's Stability Measure.
7. Effort/Cost--CPU run time, Average time to fix.
8. Complexity--McCabe's Cyclomatic Number.

Measures of Reliability of System:

1. Number of User Problem Reports.
2. Number of User Problem Reports per line of code.
3. Number of User Problem Reports induced as a result

of a maintenance activity.
4. Number of User Problem Reports induced as a result

of a maintenance activity per line of code
modified.

5. System Reliability (MTBF).
6. System Availability 4MTBF - MTTR).

MTBF
7. Completeness of Requirements.
8. Error Categorization/Impact Assessment (19:70).

147



Bibliography

1. Balzer, Robert and others. "Software Technology in
tLe 1990's: Using a New Paradigm," Computer, 16: 39-45
(November 1985).

2. Bartol, Kathryn M. "Turnover Among DP Personnel: A
Causal Analysis," Communications of the ACM, 26: 807-
811 (October 1983).

3. Berard, Edward V. "Ada Education--A Moving Target,"
Defense Science & Electronics, 3: 51-55 (May 1984).

4. Berney, Karen. "Aging Software Swamps Bureaucracy,"

Electronics, 57: 115-116 (June 14, 1984).

5. Boehm, Barry. Software Engineering Economics.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1981.

6. Brice, Linda and John Connell. "A Methodology for
Minimizing Maintenance Costs," DATAPRO, AS75-100:
151-158 (September 1984).

7. Buss, Martin D. J. "Guides to Maintaining Key Appli-
cations Programs," DATAPRO, AS75-060: 101-107 (April
1982).

8. Butler, Charles W. and others. "Mending Crazy Quilt
Systems," Datamation, 30: 130-142 (May 15, 1984).

9. Canan, James W. "The Software Crisis," Air Force
Magazine, 69: 46-52 (May 1986).

10. Childress, Maj Robert E., Jr. Contractor versus

Organic Maintenance for Space Command Automatic Data
Processing Equipment. MS thesis, AFIT/GLM/LSM/85S-13.
School of Systems and Logistics, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, September
1985 jAD-AI62307).

11. Connell, John and Linda Brice. "Prolonging the Life

of Software," DATAPRO, AS75-300: 101-107 (May 1985).

12. Department of the Air Force. Manpower: Manpower
Policies and Procedures Comparative Cost Analysis.
AFR 26-1. Washington: HQ USAF, 2 October 1981.

148

P'.J .' 0,% A) Er A *A A R .A -A &-A A~ &...d~J i. A&.k. " U .~ 'a P & A 10 161 kA ýLA A~LI I L A WA. a



13. Dunn, Robert and Robert Ullman. Quality Assurance
for Computer Software. New York: McGraw-Hill Book
Company, 1982.

14. Er, M. C. "Principles of Program Documentation,"
DATAPRO, AS75-120: 101-105 (November 1984).

15. Ferens, Daniel V. Mission Critical Computer Soft-
ware Support Management. Wright-Patterson AFB OH:
Air Force Institute of Technology, School of Systems
and Logistics, Department of Systems Acquisition
Management, February 1986.

16. Green, Lt Cmdr James F. and Lt Brena F. Selby.
Dynamic P and Control of Software Maintenance:
A Fiscal Approach. MS thesis. Naval Postgraduate
School, Monterey CA, December 1981 (AD-A112801).

17. Guimaraes, Tur. "Managing Application Program Main-
tenance Expenditures," Communications of the ACM, 26:
739-746 (October 1983).

18. Henderson, Brian J. and Brenda Sullivan. "How to
Estimate Software Maintenance Costs," DATAPRO,
AS75-105: 101-113 (February 1986).

19. Herndon, Mary Anne and Jim McCall. Software Main-
tenance Guidelines. Seminar for National Bureau of
Standards, Institute for Computer Sciences and Tech-
nology (Contract No. NB825BCA1647). Science Applica-
tions, Inc., La Jolla CA.

20. Joyce, Capt James P. A Study of the Software Main-
tenance Process of Air Force Weapon Systems. MS
thesis, AFIT/GCS7MA/82D-5. School of Engineer-
ing, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1982 (AD-AI24758).

21. Lamb, Capt Steven P. A Survey and Evaluation of
Software Quality Assurance. MS thesis, AFIT/GSM/LSY/
84S-19. School of Systems and Logistics, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
September 1984 (AD-A147552).

22. Lientz, Bennet P. and E. Burton Swanson. "Problems
in Application Software Maintenance," DATAPRO,
AS75-050: 101-108 (December 1982).

149

' k"



23. Martin, Roger J. and Wilma M. Osborne. U.S. Depart-
ment of Ccmmerce, National Bureau of Standards.
Guidance on Software Maintenance. NBS Special Publica-
tion 500-Y06. Washington: Government Printing Office,
1983.

24. McCall, James A. and others. U.S. Department of
Commerce, National Bureau of Standards. Software
Maintenance Management. NBS Special Publication
500-129. Washington: Government Printing Office, 1985.

25. McClure, Carma L. "Designing Software with Main-
tenance in Mind," DATAPRO, AS75-075: 101-117 (March
1982).

26. Osborne, Wilma M. Telephone interview. Center for
Programming Science and Technology, Institute for
Computer Sciences and Technology, National Bureau of
Standards, Gaithersburg MD, 24 July 1986.

27. Perry, William E. Hatching the EDP Quality Assurance
Function. Orlando FL: Quality Assurance Institute,
1981.

28.-. "Time to Change Attitudes about Software
Maintenance," Government Computer News, 5: 61 (June 6,
1986).

29. Peterson, Robert 0. "Maintenance Isn't Maintenance
Anymore," Data Processing Digest, 30: 5-6 (August
1984).

30. Schatz, Willie. "Fed Facts," Datamation, 32: 72
(15 Aug 1986).

31. Tayntor, Christine B. "Goal Setting in the Maintenance
Department," Data Management, 24: 36 (February 1986).

32. Thompson, Gene E. "Underworked and Overlocked: User
Documentation," Data Processing Digest, 29: 13 (June
1983).

33. Yourdon, Edward. Techniques .,z-ogram, Structure and
Design. Englewood Cliffs NJ: Prentice-Hall, Inc.,
1975.

150



Vi ta

Captain Robert E. NeSmith was born on 14 April

1954 in Hawkinsville, Georgia. He graduated from high

school in Enterprise, Alabama in 1972. He received the

degree of Bachelor of Science in Computer Science from

Troy State University in June 1978. Upon graduation, he

received his commission through Air Force ROTC. From

October 1978 to July 1982, he was assigned to the Computer

Support DCS at HQ AFLC at Wright-Patterson AFB, Ohio. He

served as an application programmer, computer operations

officer, and executive officer. From August 1982 to May

1985, he served as a computer staff officer at HQ SAC in

the computer support DCS. In May 1985, he entered the

Air Force Institute of Technology. Captain NeSmith will

receive the degree of Master of Science in Systems Manage-

ment from AFIT in September 1986.

Permanent address: 201 Forest Drive

Bellevue, Nebraska 68005

151

L



04CVRITY CLASSIFICAT;ON OF THIS PAGE j/¶ A4-
7 - REPORT DOCUMENTATION PAGE

Is. R4EPORT SECUROITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASS IFIED ____________________

2.. SECURFITY CLASSIFICATION AUTHORITY 3. OISTRiBUTION/AVAILABILITY OF REPORT

-b. fCLSSIICAIONOOWNRAONG CHEULEApproved for public release;
~b. ECUSSIICAIONOOWNRAONG CHEULEdistribution unl imi ted.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NVMSER(5)

AFIT/GSM/LSM/86S- 15
Go. 4AMAE OF PERFORMI1NG ORGANIZATION b. OFFICE SYMBOL 7a, NAME OF MONITORING ORGANIZATION

School of Systems (it applicable 0

and Logistics I AFIT/LSM
ec. ADDRESS (City. State and ZIP Coda. 7b. ADDRESS (City. State anid ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433-6583

jk. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROQCiREMjENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if Applicable;

SC. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS. _____

PPROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. I NO. NO-

11. TITLE OiIctud* Sec':'tly Ctl IfiCallonl

1.PERSONAL AUTHOR(S)

RobrtE. NeSmith TT. -S - Captain-, UýA
13P. TYPE OF REPORT 3b TIMC COVERED 14. DATE OF REPORT (Yr.. Mo.. Dayj 15. PAGE COUNT

-V MS Thesis F.-JOM _ o TO __ 1986 Septembe 163
16. SUPPLEMENTARY NOTATION

ITCOSATI CODES 1B. SUBJECT 7*--RMS IContIinue on reverse if neceflcpy and idenif~iy by Muock rtim ber)

FEDIGRO0UP sue. FR Computers, Costs, Maintenance! Computer Pro-
09 02 granuning, Programming

19. ABSTRACT iContinue on reverse it' fleser-y and Identify by block, number,

Tite:A STUDY OF SOFTWARE MAINTENANCE COSTS OF AIR FORCE
LARGE SCALE COMPUTER SYSTEMS

Thesis Chairmian; James D. Meadows, GM-13, USAF
Associate Professor of Computer Systems Analysis

Ord fl--ctc!S QMi Profemjenegts~ o

20. OISTRIBUTIONAVAILASILITY OF ABSTROC
T  

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLIMITED KJ SAME AS APT. C OTIC USERS C3 UNCLASSIFIED
22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. O'F ICE SYMBOL

itncludir.Ar'wa Codej

James D. Meadows, GM-13, USAF (513) 255-4149 AFIT/LSM

DE OR 47,83AREDITION OF 1 .JAN 73 15 OBSOLETE. UNCLASSIFIlED
SECURITY CLASSIFICATION OF THIS PAG



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Software maintenance is a growing concern throughout

the software community. Due to the rising cost of computer
software and the even greater increase in the software main-
tenance share of the budget, maintenance is becoming the major
cost in a data processing organization.

This thesis examines the maintenance costs of Air Force
"organic" software for the last thirty years. Generally, the

cost per line of code and the total costs are rising for the
large scale automatic data processing computer systems.
Contractor developed software is also examined and its influence
on Air Force software costs.

IE

I . . . -i- N L S I • E


